The coexistence of potentially toxic bloom-forming cyanobacteria (CY) and generally smaller-sized grazer communities has raised the question of zooplankton (ZP) ability to control harmful cyanobacterial blooms and highlighted the need for species-specific research on ZP-CY trophic interactions in naturally occurring communities. A combination of HPLC, molecular and stable isotope analyses was used to assess in situ the importance of CY as a food source for dominant crustacean ZP species and to quantify the grazing on potentially toxic strains of Microcystis during bloom formation in large eutrophic Lake Peipsi (Estonia). Aphanizomenon, Dolichospermum, Gloeotrichia and Microcystis dominated bloom-forming CY, while Microcystis was the major genus producing cyanotoxins all over the lake. Grazing studies showed that CY, and especially colonial CY, formed a significant, and also preferred component of algae ingested by the cladocerans Bosmina spp. and Daphnia spp. while this was not the case for the more selective calanoid copepod Eudiaptomus gracilis. Molecular analyses confirmed the presence of CY, including Microcystis, in ZP guts. Further analyses using qPCR targeting cyanobacterial genus-specific mcyE synthase genes indicated that potentially toxic strains of Microcystis can be ingested directly or indirectly by all the dominant crustacean grazers. However, stable isotope analyses indicated that little, if any, assimilation from ingested bloom-forming CY occurred. The study suggests that CY, and particularly Microcystis with both potentially toxic and non-toxic strains, can be widely ingested by cladoceran grazers during a bloom event with implications for control of CY abundance and for transfer of CY toxins through the food web.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.hal.2019.101688 | DOI Listing |
PLoS One
January 2025
State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China.
Algal decomposition plays an important role in affecting phosphorus (P) release from sediments in eutrophic lakes under global warming. Yet how rising air temperature affect endogenous P release from sediments during the algal decomposition is poorly understood. In this study, effect of increasing air temperature on endogenous P release was investigated.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Zoological Sciences, Addis Ababa University, 1176, Addis Ababa, Ethiopia.
Nutrients in an aquatic system determine productivity, integrity and ecological status of the aquatic system. However, the excessive enrichment of these nutrients emanating from severe anthropogenic activity has substantially impacted water quality and biodiversity. There is diminutive information available on the water quality and trophic status of the northern Gulf of Lake Tana, Ethiopia due to accessibility difficulties.
View Article and Find Full Text PDFHeliyon
January 2025
Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia.
Eutrophication and hypereutrophication in lakes foster harmful blue-green algal blooms, which pose a significant threat to the ecological health of freshwater reservoirs. This study investigated the effectiveness of the bio-flocculation approach using the fungus strain BGF4A1 to remove these harmful blooms, specifically targeting cyanobacterial species like PCC-7914. Key flocculation parameters, cyanobacterial concentrations, adsorption kinetics, and pellet morphology were explored in this research.
View Article and Find Full Text PDFJ Environ Manage
January 2025
State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China. Electronic address:
The excessive nutrient loading in lakes and reservoirs poses significant threats to water quality and ecological health, especially under the influence of global climate change and intensified human activities. This study focuses on the long-term trends in nutrient content and ratios, as well as their driving factors in six major lakes and reservoirs (Chaohu Lake, Danjiangkou Reservoir, Dianchi Lake, Dongtinghu Lake, Poyanghu Lake, and Taihu Lake) within the Yangtze River Catchment from 2002 to 2021. Utilizing Redundancy Analysis, Random Forest and Generalized Additive Model, we identify the shifts in natural and socio-economic factors influencing nutrient concentrations and predict future trends under various scenarios.
View Article and Find Full Text PDFEnviron Res
January 2025
Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
Cyanobacterial blooms represent a significant environmental issue posing widespread threats to global aquatic ecological health. Climate and nutrient enrichment were the most studied factors modulating cyanobacterial blooms in eutrophic lakes. However, in many floodplain lakes, the importance of hydrological variation in driving and predicting cyanobacterial blooms is often overlooked and largely underestimated, which has hampered the effectiveness of lake management.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!