Trans, trans-muconic acid (tt-MA) is a metabolite that is widely used as a biomarker to identify low exposure to benzene, a human carcinogen. This study aimed to investigate occupational factors related to the urinary tt-MA detection of benzene exposed workers in gasoline stations. Spot urine samples were collected and analyzed for tt-MA using a high performance liquid chromatography. Additional data were collected via subject interviews using a structured questionnaire. The personal benzene concentration was measured and analyzed by gas chromatography with a flame ionization detector. Results showed that, among the 170 workers, tt-MA was detected in 24.7% of workers and the concentration ranged from 23.0 to 1127.8 µg/g creatinine. Over 25% of those detections possessing tt-MA exceeding the recommended 500 µg/g creatinine was safe. A multiple logistic regression analysis identified that factors significantly associated with the detectable tt-MA were having no other part-time jobs (ORadj = 4.2), personal benzene concentrations of 0.05 ppm or higher (ORadj = 10.3), close to fuel nozzle during refuelling (ORadj = 93.7), and no job training (ORadj = 2.74). Safety training is recommended for those tt-MA detected workers or under a reference benzene concentration of 0.05 ppm or higher. The proposed reference of occupational action level to benzene exposure is 0.05 ppm and compliance could be assessed tt-MA for biomonitoring of those benzene exposed workers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6861920 | PMC |
http://dx.doi.org/10.3390/ijerph16214209 | DOI Listing |
J Occup Health
January 2025
Department of Environmental Health, University of Fukui School of Medical Science, Eiheiji, Fukui, Japan.
Objectives: Many chemicals have been used for industrial purposes, and some of them are carcinogenic to humans. However, their molecular mechanisms have not been well understood. Reactive oxygen species are generated from industrial chemicals and contribute to carcinogenesis.
View Article and Find Full Text PDFToxicology
January 2025
Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China; China State Key Laboratory of Trauma, Burn and Combined Injury, China. Electronic address:
Patients with benzene-induced leukemia undergo a continuous transformation from myelosuppression to malignant proliferation. However, the underlying mechanisms in this process remain unknown. Our previous studies have shown that the pathways involved in self-renewal capacity of bone marrow (BM) cells in Mll-Af9 mice exposed to benzene for life are significantly activated after severe blood toxicity.
View Article and Find Full Text PDFBackground: Type 2 Diabetes Mellitus (T2DM) is a significant public health burden. Emerging evidence links volatile organic compounds (VOCs), such as benzene to endocrine disruption and metabolic dysfunction. However, the effects of chronic environmentally relevant VOC exposures on metabolic health are still emerging.
View Article and Find Full Text PDFEnviron Res
December 2024
Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay 30095, Israel. Electronic address:
In soil polluted with benzene, toluene, ethylbenzene, and xylenes (BTEX), oxygen is rapidly depleted by aerobic respiration, creating a redox gradient across the plume. Under anaerobic conditions, BTEX biodegradation is then coupled with fermentation and methanogenesis. This study aimed to characterize this multi-step process, focusing on the interactions and functional roles of key microbial groups involved.
View Article and Find Full Text PDFToxicol Rep
December 2024
Department of Occupational Health and Ergonomic, Qazvin Medical University, Qazvin, Iran.
Occupational exposures are generally complex, workers are exposed with more than one hazardous agent in work environment. Combined exposure to noise and benzene is common in occupational environments. Sub-acute exposure to benzene vapors can induce oxidative stress in serum.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!