Cesium lead halide perovskite nanocrystals (NCs) have attracted enormous interest in light-emitting diode, photodetector and low-threshold lasing application in terms of their unique optical and electrical performance. However, little attention has been paid to other structures associated with CsPbBr, such as CsPbBr. Herein, we realize a facile method to prepare dual-phase NCs with improved stability against polar solvents by replacing conventional oleylamine with cetyltrimethyl ammonium bromide (CTAB) in the reprecipitation process. The growth of NCs can be regulated with different ratios of toluene and ethanol depending on solvent polarity, which not only obtains NCs with different sizes and morphologies, but also controls phase transition between orthorhombic CsPbBr and tetragonal CsPbBr. The photoluminescence (PL) and defect density calculated exhibit considerable solvent polarity dependence, which is ascribed to solvent polarity affecting the ability of CTAB to passivate surface defects and improve stoichiometry in the system. This new synthetic method of perovskite material will be helpful for further studies in the field of lighting and detectors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6915538PMC
http://dx.doi.org/10.3390/nano9111537DOI Listing

Publication Analysis

Top Keywords

solvent polarity
12
phase transition
8
cesium lead
8
lead halide
8
halide perovskite
8
perovskite nanocrystals
8
improved stability
8
mixed-solvent polarity-assisted
4
polarity-assisted phase
4
transition cesium
4

Similar Publications

Raman scattering of water in vicinity of polar complexes: Computational insight into baseline subtraction.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610, Prague, Czech Republic; Department of Analytical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague, Czech Republic. Electronic address:

Water is a greatly convenient solvent in Raman spectroscopy. However, non-additive effects sometimes make its signal difficult to subtract. To understand these effects, spectra for clusters of model ions, including transition metal complexes and water molecules, were simulated and analyzed.

View Article and Find Full Text PDF

Background: Flavonoids are among the most important compounds found in plants, since laboratory studies have shown them to be a daily requirement in human diets due to their various health benefits. Therefore, this study focused on extracting, purifying, and measuring the antioxidant activity of the flavonoid quercetin, which is widely found in plants and possesses a variety of biological activities, from different plant sources.

Methods: The extraction of quercetin was performed using several methods (chemical, physical, and enzymatic) and several extraction solutions (water, ethanol, and chloroform) from several plants (spinach, dill, Onion Skin, , sumac, digalkhasab chemri, and leelwi chemri).

View Article and Find Full Text PDF

Drug-drug co-amorphous systems are a promising approach to improve the aqueous solubility of poorly water-soluble drugs. This study explores the combination of breviscapine (BRE) and matrine (MAT) form an amorphous salt, aiming to synergistically enhance the solubility and dissolution of BRE. In silico analysis of electrostatic potential and local ionization energy were conducted on BRE-MAT complex to predict the intermolecular interactions, and solvent-free energies were calculated using thermodynamic integration and density functional theory.

View Article and Find Full Text PDF

Physical and photophysical properties of starch-based biopolymer films containing 5-(4-nitrophenyl)-1,3,4-thiadiazol-2-amine (NTA) powder as a nanofiller were examined using atomic force microscopy (AFM), Fourier-transform infrared spectroscopy (FTIR), stationary UV-Vis and fluorescence spectroscopy as well as resonance light scattering (RLS) and time-resolved measurements, and where possible, analyzed with reference to pristine NTA solutions. AFM studies revealed that the addition of NTA into the starch biopolymer did not significantly affect surface roughness, with all examined films displaying similar Sq values ranging from 70.7 nm to 79.

View Article and Find Full Text PDF

Molecular vibrations of acetylacetone enol. Infrared polarization spectroscopy and theoretical predictions.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Department of Science and Environment, Roskilde University, Universitetsvej 1, P.O. Box 260, DK-4000 Roskilde, Denmark. Electronic address:

The IR polarization spectrum of acetylacetone enol (AAe, (3Z)-4-hydroxy-3-penten-2-one) was recorded in the region 2000 - 450 cm using stretched polyethylene as an anisotropic solvent. The measured orientation factors were consistent with C molecular symmetry of AAe and provided an experimental distinction between in-plane and out-of-plane polarized spectral features. The results suggest the assignment of at least one previously unrecognized fundamental transition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!