Fabrication of Spherical Titania Inverse Opal Structures Using Electro-Hydrodynamic Atomization.

Molecules

Department of Chemical Engineering, Soonchunhyang University, 22 Soonchunhyang-ro, Shinchang-myeon, Asan-si, Chungcheongnam-do 31538, Korea.

Published: October 2019

Spherical PS/HEMA opal structure and spherical titania inverse opal structure were fabricated by self-assembly of colloidal nanoparticles in uniform aerosol droplets generated with electro-hydrodynamic atomization method. When a solution of PS/HEMA nanoparticles with uniform size distribution was used, PS/HEMA nanoparticles self-assembled into a face-centered cubic (FCC) structure by capillary force with the evaporation of the solvent in aerosol droplet, resulting in a spherical opal structure. When PS/HEMA nanoparticles and anatase titania nanoparticles were dispersed simultaneously into the solution, titania nanoparticles with relatively smaller size were assembled at the interstitial site of PS/HEMA nanoparticles packed in the FCC structure, resulting in a spherical opal composite structure. Spherical titania inverse opal structure was fabricated after removing PS/HEMA nanoparticles from the spherical opal composite structure by calcination.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6864455PMC
http://dx.doi.org/10.3390/molecules24213905DOI Listing

Publication Analysis

Top Keywords

ps/hema nanoparticles
20
opal structure
16
spherical titania
12
titania inverse
12
inverse opal
12
structure spherical
12
spherical opal
12
electro-hydrodynamic atomization
8
structure
8
structure fabricated
8

Similar Publications

Fabrication of Spherical Titania Inverse Opal Structures Using Electro-Hydrodynamic Atomization.

Molecules

October 2019

Department of Chemical Engineering, Soonchunhyang University, 22 Soonchunhyang-ro, Shinchang-myeon, Asan-si, Chungcheongnam-do 31538, Korea.

Spherical PS/HEMA opal structure and spherical titania inverse opal structure were fabricated by self-assembly of colloidal nanoparticles in uniform aerosol droplets generated with electro-hydrodynamic atomization method. When a solution of PS/HEMA nanoparticles with uniform size distribution was used, PS/HEMA nanoparticles self-assembled into a face-centered cubic (FCC) structure by capillary force with the evaporation of the solvent in aerosol droplet, resulting in a spherical opal structure. When PS/HEMA nanoparticles and anatase titania nanoparticles were dispersed simultaneously into the solution, titania nanoparticles with relatively smaller size were assembled at the interstitial site of PS/HEMA nanoparticles packed in the FCC structure, resulting in a spherical opal composite structure.

View Article and Find Full Text PDF

The skin disposition of topically applied nanoparticles with varying degrees of hydrophobicity, composed of different proportions of polystyrene (PS) and poly-(2-hydroxyethyl methacrylate) (HEMA), and of an associated, model "active" (Nile Red), was investigated. PS-HEMA copolymer nanoparticles were fluorescently labeled, via the covalent incorporation of a small quantity of fluorescein methacrylate, and characterized by dynamic light scattering, transmission electron microscopy and NMR. The fluorophore, Nile Red, was dispersed into the nanoparticles and its loading was determined by ultracentrifugation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!