The electronic structure of a molecule with nine-crossing composite knots 9 link denoted by the Alexander-Briggs notation (complex-1) are studied by means of theoretical methods (DFT). The most interesting feature of this kind of molecules is their capability to capture anion spices inside the cage. Stability and chemical reactivity were evaluated taking advantage of the criteria chemical hardness and chemical potential. The simulation of the infrared spectra is also included and shows the characteristic signal of the molecule in a range 1000-1600 cm. The frontier molecular orbitals were also analyzed. Whereas the capability to capture chlorine ion into the cavity of the complex-1 is explored by means the analysis of bond energy. Also, the electron density distribution of the chlorine complex was studied by means the quantum theory of atoms in molecules (QTAIM) formalism in order to stablish its bonding properties as well as the electron transfer between chlorine ion and complex-1 which was approached by the natural bonding orbital (NBO) and Hirshfeld charge. Ours results revels semiconductor behaviors for both compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmgm.2019.107481 | DOI Listing |
Biomed Opt Express
January 2025
Department of Electronic Engineering, Maynooth University, Maynooth, Co. Kildare, Ireland.
Optical diffraction tomography enables label-free, 3D refractive index (RI) imaging of biological samples. We present a novel, cost-effective approach to ODT that employs a modular design incorporating a self-reference holographic capture module. This two-part system consists of an illumination module and a capture module that can be seamlessly integrated with any life-science microscope using an automated alignment protocol.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Dalian University of Technology State Key Laboratory of High-Performance Precision Manufacturing, Key Laboratory for Micro/Nano Technology and System of Liaoning Province, School of Mechanical Engineering, Dalian 116024, China.
Inspired by ancient trilobites, novel curved microlens arrays (CMLAs) were designed. Direct, fast, and low-cost CMLAs with two focal planes were fabricated using ultraprecision machining technology and hot embossing technology. We designed four pairs of artificial compound eyes (ACEs) composed of large and small lenses with four different curvatures to achieve focusing and imaging on two focal planes.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, U.K.
Accurate prediction of chlorophyll- (Chl-) concentrations, a key indicator of eutrophication, is essential for the sustainable management of lake ecosystems. This study evaluated the performance of Kolmogorov-Arnold Networks (KANs) along with three neural network models (MLP-NN, LSTM, and GRU) and three traditional machine learning tools (RF, SVR, and GPR) for predicting time-series Chl- concentrations in large lakes. Monthly remote-sensed Chl- data derived from Aqua-MODIS spanning September 2002 to April 2024 were used.
View Article and Find Full Text PDFNonlinear activation functions (NAFs) are essential in artificial neural networks, enhancing learning capabilities by capturing complex input-output relationships. However, most NAF implementations rely on additional optoelectronic devices or digital computers, reducing the benefits of optical computing. To address this, we propose what we believe to be the first implementation of a nonlinear modulation process using an electro-optic IQ modulator on a silicon photonic convolution operator chip as a novel NAF.
View Article and Find Full Text PDFAnal Chem
January 2025
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
To facilitate on-site detection by nonspecialists, there is a demand for the development of portable "sample-to-answer" devices capable of executing all procedures in an automated or easy-to-operate manner. Here, we developed an automated detection device that integrated a magnetofluidic manipulation system and a signal acquisition system. Both systems were controllable via a smartphone.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!