In this paper, we described the synthesis and cytotoxic activities of two new series of thieno[2,3-d]pyrimidine and thieno[3,2-d] pyrimidine derivatives. Most of the synthesized compounds had significant antiproliferative activities against PC3, MDA-MB-231, A549, and HeLa cell lines in comparison to the reference drug, erlotinib. Compounds N-(4-((3,5-dichlorophenyl)amino)thieno[2,3-d]pyrimidin-6-yl)cinnamamide 8e and (E)-N-(4-((3,4-dichlorophenyl)amino)thieno[2,3-d]pyrimidin-6-yl)-3-(4-methoxyphenyl)acrylamide 8g with IC values of 4 nM and 33 nM, respectively, against HeLa cell line were chosen for further studies. The apoptosis induced activity and cell cycle arrest were determined and the results provided evidence that these compounds induced cell death via apoptosis and arrested cell growth in sub-G1 phase. In addition, western blot analysis manifested the promising result of suppressing the EGFR signaling pathway (p-EGFR/p-ERK1/2). The docking studies appreciated the considerable potency of compound 8e based on hydrogen and covalent binding interactions. Eventually, in silico pharmacokinetic prediction indicated the acceptable bioavailability of all final compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2019.111786 | DOI Listing |
Discov Nano
December 2024
Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
Cervical cancer remains a significant health challenge in developing countries are high due to low HPV vaccination rates, delayed diagnosis, and restricted healthcare access. Metal nanomaterials, such as copper oxide (CuO) nanoparticles (NPs), have shown significant promise in cancer therapy due to their ability to induce apoptosis. 5-Fluorouracil (5-Fu) enhances the cytotoxic effect against cervical cancer, working synergistically with CuO NPs to maximize the therapeutic impact while potentially reducing the 5-Fu's systemic side effects.
View Article and Find Full Text PDFToxins (Basel)
December 2024
Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences-Campus Bellvitge, University of Barcelona, 08907 Barcelona, Spain.
Epsilon toxin (ETX) from is a pore-forming toxin (PFT) that crosses the blood-brain barrier and binds to myelin structures. In in vitro assays, ETX causes oligodendrocyte impairment, subsequently leading to demyelination. In fact, ETX has been associated with triggering multiple sclerosis.
View Article and Find Full Text PDFGels
December 2024
Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, University Boulevard No. 14418, Otay Mesa, Tijuana 22390, Mexico.
This study aims to design microgels that are thermo- and pH-sensitive for controlled doxorubicin (Dox) release in response to tumor microenvironment changes. N-isopropylacrylamide (NIPAAm) is widely used for thermoresponsive tumor-targeted drug delivery systems for the release of therapeutic payloads in response to temperature changes. Herein, a NIPAAm microgel (MP) that is responsive to temperature and pH was designed for the smart delivery of Dox.
View Article and Find Full Text PDFChem Biodivers
December 2024
University of Jinan, School of Biological Science and Technology, 336 West Road of Nanxinzhuang, 250022, Jinan, CHINA.
Four unreported pyridine alkaloids, curviflorines A-D (1-4), two undescribed iridoids, curviridoids A and B (5 & 6), and one known iridoid glycoside (7), were isolated from the twigs and leaves of Phlogacanthus curviflorus. The structures of these compounds were established by detailed interpretation of MS and NMR data, with the absolute configurations being assigned via comparison of experimental and calculated electronic circular dichroism spectra. Notably, it is the first report of alkaloidal constituents (1-4) from the genus Phlogacanthus.
View Article and Find Full Text PDFFEBS Lett
December 2024
Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science, Wako, Japan.
FOXO3a is a transcription factor involved in cell growth inhibition and apoptosis. FOXO3a is localized in the cytoplasm in cancer cells, and its nuclear translocation by small molecules is expected to prevent cancer cell growth. In this study, we screened a fungal broth library in HeLa cells using fluorescently labeled FOXO3a and an AI-based imaging system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!