Acute and chronic rotator cuff tears remain challenging for therapy. A wide range of therapeutic approaches were developed but re-tears and postoperative complications occur regularly. Especially in elderly people, the natural regeneration processes are decelerated, and graft materials are often necessary to stabilize the tendon-to-bone attachment and to improve the healing process. We here investigated in a small animal model a newly developed electrospun polycaprolactone fiber implant coated with a chitosan-polycaprolactone graft copolymer and compared these implants biomechanically and histologically with either a commercially available porous polyurethane implant (Biomerix 3D Scaffold) or suture-fixed tendons. Fifty-one rats were divided into three groups of 17 animals each. In the first surgery, the left infraspinatus tendons of all rats were detached, and the animals recovered for 4 weeks. In the second surgery, the tendons were fixed with suture material only (suture-fixed group; n = 17), whereas in the two experimental groups, the tendons were fixed with suture material and the polyurethane implant (Biomerix scaffold group; n = 17) or the modified electrospun polycaprolactone fiber implant (CS-g-PCL scaffold group; n=17), respectively. The unaffected right infraspinatus tendons were used as native controls. After a recovery of 8 weeks, all animals were clinically inconspicuous. In 12 animals of each group, repaired entheses were biomechanically tested for force at failure, stiffness, and modulus of elasticity, and in five animals, repaired entheses were analyzed histologically. Biomechanically, all parameters did not differ statistically significant between both implant groups, and the entheses failed typically at the surgical site. However, with respect to the force at failure, the median values of the two implant groups were smaller than the median value of the suture-fixed group. Histologically, the modified polycaprolactone fiber implant showed no acute inflammation processes, a good infiltration with cells, ingrowth of blood vessels and tendinous tissue, and a normal fibrous ensheathment. Further improvement of the implant material could be achieved by additional implementation of drug delivery systems. Therewith, the used CS-g-PCL fiber mat is a promising basic material to reach the goal of a clinically usable graft for rotator cuff tear repair.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/term.2985 | DOI Listing |
Jpn J Radiol
January 2025
Artificial Intelligence and Translational Imaging (ATI) Lab, Department of Radiology, School of Medicine, University of Crete, Voutes Campus, Heraklion, Greece.
Objective: Calcific tendinopathy, predominantly affecting rotator cuff tendons, leads to significant pain and tendon degeneration. Although US-guided percutaneous irrigation (US-PICT) is an effective treatment for this condition, prediction of patient' s response and long-term outcomes remains a challenge. This study introduces a novel radiomics-based model to forecast patient outcomes, addressing a gap in the current predictive methodologies.
View Article and Find Full Text PDFCurr Sports Med Rep
January 2025
Nellis Family Medicine Residency Program, Nellis Air Force Base, Las Vegas, NV.
Am J Sports Med
January 2025
Department of Sports Medicine, Shanghai Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
Background: Arthroscopic repair with the biceps rerouting (BR) technique has been determined to lead to promising clinical and biomechanical outcomes for treating large-to-massive rotator cuff tears (LMRCTs). However, the in vivo effects of BR on glenohumeral kinematics during functional shoulder movements have not been fully elucidated.
Purpose: To investigate whether BR provides a better restoration of shoulder kinematics compared with conventional rotator cuff repair (RCR).
Am J Sports Med
January 2025
Sports Medicine Center, Department of Orthopaedic Surgery/Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
Background: Traditional superior capsular reconstruction (SCR) with biceps tendon transposition (TB) alone for irreparable massive rotator cuff tears (IMRCTs) has demonstrated a high retear rate, highlighting the need for alternative approaches. Therefore, SCR using a peroneus longus tendon graft (PLG) combined with TB (PLG-TB) should be clinically studied.
Purpose: To compare the clinical and radiological outcomes of SCR using the PLG-TB technique versus the TB technique alone for IMRCT.
Am J Sports Med
January 2025
Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, P.R. China.
Background: For patients with osteoporosis and rotator cuff tears, there is still no consensus on current treatment methods. The material, structure, and number of anchors have important effects on the repair outcome.
Purpose: To investigate the use of chitosan quaternary ammonium salt-coated nickel-titanium memory alloy (NTMA) anchors to treat rotator cuff injury in shoulders with osteoporosis in a rabbit osteoporosis model.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!