Effect of sonication time on the evaporation rate of seawater containing a nanocomposite.

Ultrason Sonochem

School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China. Electronic address:

Published: March 2020

Sonication time has a significant contribution to the stability and properties of nanofluids (mixtures of nanoparticles and a base fluid). Finding the optimum sonication time can help to save energy and ensure optimal design. The present study deals with the sonication time effect on the evaporation rate of seawater containing a nanocomposite (i.e., a mixture of multi-walled carbon nanotubes and graphene nanoplates). For indoor experiments, a solar simulator was employed as the radiation source. At first, the nanofluid with a concentration of 0.01% wt. was sonicated in an ultrasonic bath for different times of 30, 60, 90, 120, 180, 240 min, and the associated zeta potential values were recorded to evaluate the stability. Next, the best time function was used to appraise the effect of concentration variations (0.001, 0.002, 0.004, 0.01, 0.02 and 0.04% wt.) and the light intensities (1.6, 2.6, and 3.6 suns) on the rate of solar steam generation. The results indicate that for a concentration of 0.01% wt. and under 3.6 suns, the highest evaporation efficiency of 61.3% would be achieved at 120 min sonication time.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultsonch.2019.104817DOI Listing

Publication Analysis

Top Keywords

sonication time
20
time evaporation
8
evaporation rate
8
rate seawater
8
seawater nanocomposite
8
sonication
5
time
5
nanocomposite sonication
4
time contribution
4
contribution stability
4

Similar Publications

The blood-brain barrier (BBB) is selectively permeable, but it also poses significant challenges for treating CNS diseases. Low-intensity focused ultrasound (LiFUS), paired with microbubbles is a promising, non-invasive technique for transiently opening the BBB, allowing enhanced drug delivery to the central nervous system (CNS). However, the downstream physiological effects following BBB opening, particularly secondary responses, are not well understood.

View Article and Find Full Text PDF

This paper highlights the optimisation of a key design parameter essential to the development of PMUTs, which are part of the transmitting components of microsensors. These microsensors are designed for use in the Structural Health Monitoring of reinforced concrete structures. Enhancing the effectiveness of the transmitting component allows for greater spacing between microsensors, which in turn reduces the number of devices needed to implement a full structural health monitoring system.

View Article and Find Full Text PDF

In the present study, the impact of ultrasonication treatment (US) at varying time duration (10 and 20 min) on pearl millet protein (PMP) was evaluated. The native and ultrasonicated PMP were evaluated for techno-functional properties, zeta potential, particle size, SEM, FTIR, thermal properties and dynamic rheology. The significant (p < 0.

View Article and Find Full Text PDF

Magnetoliposomes containing magnetite, soy lecithin, stigmasterol, and beta-sitosterol of the mean size minor than 160 nm were obtained by a scalable and green process using autoclave and sonication without organic solvents. The formation, size of the liposome, linkage, and encapsulation of the magnetite were evaluated by Cryo-TEM. The stability of magnetoliposomes after storage for 6 months at 4 °C was improved by liposome size, the ability of soy lecithin to preserve the magnetite phase against oxidation, pH, polydispersity index, and zeta potential.

View Article and Find Full Text PDF

Purpose: Biodiesel is a non-toxic, renewable, and environmentally friendly fuel used in compression ignition engines. This work aimed to develop FeO/SiO as a cheap, magnetic, and easy separable catalyst for biodiesel production from waste oil by sono-catalytic transesterification.

Methods: Fe₃O₄-SiO₂ was prepared using a modified Stober method and used as a heterogeneous catalyst in an ultrasound-assisted transesterification reaction to produce biodiesel.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!