Highly reduced ecotoxicity of ZnO-based micro/nanostructures on aquatic biota: Influence of architecture, chemical composition, fixation, and photocatalytic efficiency.

Water Res

Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, CH-3602, Thun, Switzerland.

Published: February 2020

Developing efficient sunlight photocatalysts with enhanced photocorrosion resistance and minimal ecotoxicological effects on aquatic biota is critical to combat water contamination. Here, the role of chemical composition, architecture, and fixation on the ecotoxicological effects on microalgae of different ZnO and ZnO@ZnS based water decontamination photocatalysts was analyzed in depth. In particular, the ecotoxicological effects of films, nanoparticles and biomimetic micro/nano-ferns were carefully assessed by correlating the algae's viability to the Zn(II) release, the photocatalyst-microalgae interaction, and the production of reactive oxygen species (ROS). The results showed a drastic improvement in algal viability for supported ZnO@ZnS core@shell micro/nanoferns, as their ecotoxicity after 96 h light exposure was significantly lower (3.7-10.0% viability loss) compared to the ZnO films (18.4-35.5% loss), ZnO micro/nanoferns (28.5-53.5% loss), ZnO nanoparticles (48.3-91.7% loss) or ZnO@ZnS nanoparticles (8.6-19.2% loss) for catalysts concentrations ranging from 25 mg L to 400 mg L. In particular, the ZnO@ZnS micro/nanoferns with a concentration of 400 mg L exhibited excellent photocatalytic efficiency to mineralize a multi-pollutant solution (81.4 ± 0.3% mineralization efficiency after 210 min under UV-filtered visible light irradiation) and minimal photocorrosion (<5% of photocatalyst dissolution after 96 h of UV-filtered visible light irradiation). Remarkably, the ZnO@ZnS micro/nanoferns showed lower loss of algal viability (9.8 ± 1.1%) after 96 h of light exposure, with minimal reduction in microalgal biomass (9.1 ± 1.0%), as well as in the quantity of chlorophyll-a (9.5 ± 1.0%), carotenoids (8.6 ± 0.9%) and phycocyanin (5.6 ± 0.6%). Altogether, the optimized ZnO@ZnS core@shell micro/nanoferns represent excellent ecofriendly photocatalysts for water remediation in complex media, as they combine enhanced sunlight remediation efficiency, minimal adverse effects on biological microorganisms, high reusability and easy recyclability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2019.115210DOI Listing

Publication Analysis

Top Keywords

ecotoxicological effects
12
aquatic biota
8
chemical composition
8
photocatalytic efficiency
8
loss zno
8
loss
5
highly reduced
4
reduced ecotoxicity
4
ecotoxicity zno-based
4
zno-based micro/nanostructures
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!