A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nanocrystalline ferrihydrite activated peroxymonosulfate for butyl-4-hydroxybenzoate oxidation: Performance and mechanism. | LitMetric

Heterogeneous catalysts activated peroxymonosulfate (PMS) for degradation of refractory organic contaminants has been recognized as a promising removal technology for the environmental remediation. In this study, nanocrystalline ferrihydrite (NFH) was prepared to activate PMS for the degradation of butyl-4-hydroxybenzoate (BHB). XPS analysis indicates that calcination process played a key role in regulating the surface oxygen species of NFH, thus control its activation ability toward PMS. NFH exhibits excellent stability (the released concentration of Fe ions < 0.13 mg/L) and desirable reusability. Increasing solution temperature and NFH dosage exerted a positive role in PMS activation for BHB removal, while such positive correlation was not found in the case of increasing initial pH. Increasing the static solution dissolved oxygen remarkably enhanced BHB oxidation kinetics. However, continuous N and air blowing caused a significant decline in BHB removal. Reaction mechanism study showed that SO, OH, O, and O were the main reactive oxygen species for degrading BHB by NFH/PMS. LC/MS analysis indicated BHB was degraded by the pathways of hydroxylation, carboxylation, decarboxylation, dehydrogenation, ring cleavage and chain cleavage reaction. This work suggests the ferrihydrite might be a promising catalyst to activate PMS to destroy refractory organic pollutants in the environmental remediation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2019.125140DOI Listing

Publication Analysis

Top Keywords

nanocrystalline ferrihydrite
8
activated peroxymonosulfate
8
pms degradation
8
ferrihydrite activated
4
peroxymonosulfate butyl-4-hydroxybenzoate
4
butyl-4-hydroxybenzoate oxidation
4
oxidation performance
4
performance mechanism
4
mechanism heterogeneous
4
heterogeneous catalysts
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!