Altered N-glycan profile of IgG-depleted serum proteins in Hashimoto's thyroiditis.

Biochim Biophys Acta Gen Subj

Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland. Electronic address:

Published: March 2020

AI Article Synopsis

  • Hashimoto's thyroiditis (HT) is an autoimmune disorder that primarily causes inflammation of the thyroid gland and is the leading cause of hypothyroidism, though its exact mechanisms remain unclear.* -
  • The study used high-performance liquid chromatography and mass spectrometry to analyze serum N-glycans in HT patients, revealing changes in glycosylation patterns, particularly an increase in specific sialylated structures and a decrease in core fucosylation.* -
  • These glycosylation alterations may be linked to the chronic inflammation associated with HT, indicating that serum protein sialylation changes are characteristic of autoimmune processes in this condition.*

Article Abstract

Background: Hashimoto's thyroiditis (HT) is an autoimmune disease characterized by chronic inflammation of thyroid gland. Although HT is the most common cause of hypothyroidism, the pathogenesis of this disease is not fully understood. Glycosylation of serum proteins was examined in HT only to a limited extent. The study was designed to determine the glycosylation pattern of IgG-depleted sera from HT patients.

Methods: Serum N-glycans released by N-glycosidase F (PNGase F) digestion were analyzed by normal-phase high-performance liquid chromatography (NP-HPLC). N-glycan structures in each collected HPLC fraction were determined by liquid chromatography-mass spectrometry (LC-MS) and exoglycosidase digestion. Fucosylation and sialylation was also analyzed by lectin blotting.

Results: The results showed an increase of monosialylated tri-antennary structure (A3G3S1) and disialylated diantennary N-glycan with antennary fucose (FA2G2S2). Subsequently, we analyzed the serum N-glycan profile by lectin blotting using lectins specific for fucose and sialic acid. We found a significant decrease of Lens culinaris agglutinin (LCA) staining in HT samples, which resulted from the reduction of α1,6-linked core fucose in HT serum. We also observed an increase of Maackia amurensis II lectin (MAL-II) reaction in HT due to the elevated level of α2,3-sialylation in HT sera.

Conclusions: The detected alterations of serum protein sialylation might be caused by chronic inflammation in HT. The obtained results complete our previous IgG N-glycosylation analysis in autoimmune thyroid patients and show that the altered N-glycosylation of serum proteins is characteristic for autoimmunity process in HT. General Significance Thyroid autoimmunity is accompanied by changes of serum protein sialylation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbagen.2019.129464DOI Listing

Publication Analysis

Top Keywords

serum proteins
12
n-glycan profile
8
serum
8
hashimoto's thyroiditis
8
chronic inflammation
8
serum protein
8
protein sialylation
8
altered n-glycan
4
profile igg-depleted
4
igg-depleted serum
4

Similar Publications

Old and New Biomarkers in Idiopathic Recurrent Acute Pericarditis (IRAP): Prognosis and Outcomes.

Curr Cardiol Rep

January 2025

Division of Internal Medicine, Fatebenefratelli Hospital, ASST Fatebenefratelli Sacco, University of Milan, Piazzale Principessa Clotilde, 3, Milan, 20121, Italy.

Purpose Of Review: To outline the latest discoveries regarding the utility and reliability of serum biomarkers in idiopathic recurrent acute pericarditis (IRAP), considering recent findings on its pathogenesis. The study highlights the predictive role of these biomarkers in potential short- (cardiac tamponade, recurrences) and long-term complications (constrictive pericarditis, death).

Recent Findings: The pathogenesis of pericarditis has been better defined in recent years, focusing on the autoinflammatory pathway.

View Article and Find Full Text PDF

Brucella spp. is the bacterium responsible for brucellosis, a zoonotic infection that affects humans. This disease poses significant health challenges and contributes to poverty, particularly in developing countries.

View Article and Find Full Text PDF

Biocompatibility of Phosphorus Dendrimers and Their Antibacterial Properties as Potential Agents for Supporting Wound Healing.

Mol Pharm

January 2025

Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland.

Dendrimers are a wide range of nanoparticles with desirable properties that can be used in many areas of medicine. However, little is known about their potential use in wound healing. This study examined the properties of phosphorus dendrimers that were built on a cyclotriphosphazene core and pyrrolidinium (DPP) or piperidinium (DPH) terminated groups, to be used as potential factors that support wound healing ().

View Article and Find Full Text PDF

The coronavirus disease 2019 (COVID-19) is a fatal disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). To date, several vaccines have been developed to combat the spread of this virus. Mucosal vaccines using food-grade bacteria, such as Lactobacillus spp.

View Article and Find Full Text PDF

Background: Denosumab represents a valuable treatment option for unresectable giant cell tumors of the bone (GCTBs). However, no standardized protocols exist determining the length of administration, with few studies having been published on patients who reached the end of treatment.

Aims: To analyze the outcomes of patients diagnosed with GCTB and who had finished single treatment with denosumab.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!