Optimization of a suspension culture for a Theileria annulata-infected bovine cell line.

Acta Trop

State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China. Electronic address:

Published: February 2020

Theileria annulata schizont transformed bovine lymphocytes show the feature of permanent proliferation in vitro culture. In this study, we optimized a suitable culture medium for transformed cells to ensure a high yield of quality cells in suspension culture. As the basis for the optimized medium, we combined 75% Gibco (GB) and 25% RPMI-1640 medium. Glucose, lactic acid, ammonia, growth factors and several kinds of amino acids at specific concentrations play important roles in maintaining the maximum growth rate and the quality of cells. The metabolic flow of 17 amino acids, glucose and nutrients was determined with high-performance liquid chromatography (HPLC) and cell viability analysis. The genetic stability of the TaSP and TaSE genes at different passages of the cell line in suspension culture was determined using PCR amplification. The optimal concentrations or tolerated levels of glucose, lactic acid and ammonia were 10-14, 2-5.5 and 3.5-5.5 mmol/L, respectively. Our data demonstrated that the potential utility of the medium optimized here to yield high quality cells compared with basal (normally used) medium. The medium also facilitated the easy maintenance of transformed cells with high yields and excellent quality for in vitro studies. This study also provides insight into the processes of optimization and vaccine development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actatropica.2019.105237DOI Listing

Publication Analysis

Top Keywords

suspension culture
12
quality cells
12
transformed cells
8
glucose lactic
8
lactic acid
8
acid ammonia
8
amino acids
8
medium
6
culture
5
cells
5

Similar Publications

Impact of Gene Knockout on Cell Aggregation in Suspension Culture.

BioTech (Basel)

January 2025

Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, pr. Lavrentieva 10, Novosibirsk 630090, Russia.

The development of efficient producers of recombinant pharmaceuticals based on plant cell suspension cultures is a pressing challenge in modern applied science. A primary limitation of plant cell cultures is their relatively low yield of the target protein. One strategy to enhance culture productivity involves reducing cell aggregation.

View Article and Find Full Text PDF

Harnessing cell aggregates for enhanced adeno-associated virus manufacturing: Cultivation strategies and scale-up considerations.

Biotechnol Prog

January 2025

AdBIOPRO, VINNOVA Competence Centre for Advanced Bioproduction by Continuous Processing, Royal Institute of Technology (KTH), Stockholm, Sweden.

The possibility to produce recombinant adeno-associated virus (rAAV) by adherent HEK293T cells was studied in a stirred tank bioreactor (STR) culture of cell aggregates. A proof-of-concept of rAAV production was successfully demonstrated in a process where single cells were first expanded, then cell aggregates were formed by dilution into a different medium 1 day before triple plasmid transfection was conducted. An alternative approach for the STR inoculation using a seed taken from a high cell density perfusion (HCDP) culture was also investigated.

View Article and Find Full Text PDF

Generation of upscaled quantities of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM), for therapeutic or testing applications, is both expensive and time-consuming. Herein, a scalable bioprocess for hiPSC-CM expansion in stirred-tank bioreactors (STB) is developed. By combining the continuous activation of the Wnt pathway, through perfusion of CHIR99021, within a mild hypoxia environment, the expansion of hiPSC-CM as aggregates is maximized, reaching 4 billion of pure hiPSC-CM in 2L STB.

View Article and Find Full Text PDF

A Non-Centrifugation Method to Concentrate and Purify Extracellular Vesicles Using Superabsorbent Polymer Followed by Size Exclusion Chromatography.

J Extracell Vesicles

January 2025

Department of Internal Medicine and Clinical Nutrition, Krefting Research Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.

Extracellular vesicles (EVs) can be isolated and purified from cell cultures and biofluids using different methodologies. Here, we explored a novel EV isolation approach by combining superabsorbent polymers (SAP) in a dialysis membrane with size exclusion chromatography (SEC) to achieve high concentration and purity of EVs without the use of ultracentrifugation (UC). Suspension HEK293 cells transfected with CD63 coupled with Thermo Luciferase were used to quantify the EV yield and purity.

View Article and Find Full Text PDF

Objective: Focused ultrasound has emerged as a precise and minimally invasive modality for effective cancer treatment. In this study, we propose a novel method that integrates the mechanical effects of focused ultrasound, known as histotripsy, with heating to enhance both the immediate and sustained cytotoxic effects on cancer cells.

Methods: Our investigation focused on VX2 cancer cells in suspension, examining five experimental groups: blank control, negative control, heating alone, histotripsy alone, and histotripsy with subsequent heating.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!