The presence of excess nitrate in groundwater limits it use as a drinking water supply and its removal is critical to balance the nitrogen cycle in aquatic systems. In this study, ultra-thin 2-dimensional Ag-TiO/γ-AlO/Chitosan (Ag-TiO/AlO/CS) nano-composite was synthesized for the fast reduction of nitrate under UVA irradiation from aqueous solutions. As-synthesized nano-composite was well characterized by X-ray diffraction, transmission electron microscopy, N adsorption-desorption isotherms, Fourier-transform infrared spectroscopy and UV-vis diffuse reflectance spectroscopy. Experimental variables including pH, nitrate concentration, photocatalyst dose and contact time were considered to demonstrate their effect on the rate of nitrate reduction. Formic acid was used as a radical scavenger at optimal concentration of 2:1 (formic acid:nitrate). The results showed that upon UVA irradiation, the synthesized nano-composite exhibited fast nitrate reduction in broad pH range (about 74% removal at pH 11 in 5 min reaction time) in diverse water chemical conditions. The Ag-doped and hybrid heterostructures can effectively utilize UV-visible-light to remove nitrate and degrade formic acid. For the 3 cycles the photocatalyst efficiency remained same and after the third cycle, its efficacy decreased gradually. This work suggests 2D Ag-TiO/AlO/CS nano-composite for the fast removal of nitrate in drinking water treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2019.09.183 | DOI Listing |
Chem Biodivers
January 2025
Physics Department, Centre National de la Recherche Scientifique (Unité Mixte de Recherche 6283), Institut des Molécules et Matériaux du Mans, Le Mans Université, Le Mans, France.
This study presents, for the first time, the comparison of behavior between two commonly found plant species, their extracts, and their major constituents (glucose and sucrose constituting over 70% of their dried extract) to synthesize zinc oxide (ZnO) nanoparticles (NPs) from zinc nitrate hexahydrate. The findings underscore the critical role of sugars as key constituents in facilitating this synthesis. This research demonstrates that the process can occur at relatively low temperatures (120°C).
View Article and Find Full Text PDFFunct Plant Biol
January 2025
Krishi Vigyan Kendra, Siwan, Dr. RPCAU, Pusa, Bihar, India.
Detrimental effects of terminal heat stress could be mitigated by exogenous application of synthetic compounds by preserving cell membrane integrity and protecting against oxidative damage. A field experiment was conducted to test the application of seven synthetic compounds on wheat growth traits: (1) thiourea (20 mM and 40mM); (2) potassium nitrate (1% and 2%); (3) sodium nitroprusside (400 μg mL-1 and 800μg mL-1 ); (4) dithiothreitol (25 ppm and 50ppm); (5) salicylic acid (100 ppm and 200ppm); (6) thioglycolic acid (200 ppm and 500ppm); and (7) putrescine (4 mM and 6mM). These compounds were applied at the anthesis and grain-filling stages to enhance physio-biochemical traits and yield attributes of wheat (Triticum aestivum ) cvs GW-11 and GW-496 under terminal heat stress.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Kentucky, Lexington, KY, USA.
Background: Impaired interstitial fluid drainage in the brain is indicated by the presence of perivascular β-amyloid (Aβ) deposits and is attributed to alterations in contractility and relaxation of vascular smooth muscle cells (SMCs). The brain microvasculature in Alzheimer disease (AD) accumulates amyloid-forming amylin secreted from the pancreas. Here, we tested the hypothesis that cerebrovascular amylin deposits perturbs cerebral Aβ efflux by impairing cerebral vasodilation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemical Engineering, and Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion Israel Institute of Technology (GTIIT), Guangdong 515063, China.
Strong metal-support interactions (SMSIs) are essential for optimizing the performance of supported metal catalysts by tuning the metal-oxide interface structures. This study explores the hydrogenation of CO to methanol over Cu-supported catalysts, focusing on the synergistic effects of strong metal-support interaction (SMSI) and oxygen vacancies introduced by the CO treatment to the catalysts on the catalytic performance. Cu nanoparticles were immobilized on Mg-Al layered double oxide (LDO) supports and modified with nitrate ions to promote oxygen vacancy generation.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Jingjiang College, Institute of Enviroment and Ecology, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, China.
Litter decomposition is essential for nutrient and chemical cycling in terrestrial ecosystems. Previous research on litter decomposition has often underestimated its impact on soil nutrient dynamics and allelopathy. To address this gap, we conducted a comprehensive study involving both field and greenhouse experiments to examine the decomposition and allelopathic effects of the invasive L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!