Activation of sialoadhesin down-regulates the levels of innate antiviral cytokines in porcine alveolar macrophages in vitro.

Virus Res

College of Animal Science and Veterinary Medicine, Henan Agricultural University, No. 95 Wen Hua Road, Zhengzhou, 450002, China. Electronic address:

Published: January 2020

Porcine sialoadhesin (pSn) is a crucial porcine reproductive and respiratory syndrome virus (PRRSV) receptor mediating the attachment and internalization of virus into its major target cells, porcine alveolar macrophages (PAMs). However, the role of pSn in innate antiviral immune response has not yet been investigated. In this study, our results showed that PRRSV down-regulated significantly the mRNA levels of IFN-α, IFN-β, IFN-γ, IFN-λ1, IFN-λ3 and IFN-λ4 and up-regulated significantly the mRNA levels of IL-10 and pSn in infected PAMs in vitro, suggesting that PRRSV infection inhibited the transcription of innate antiviral cytokines in host cells. Our results also showed that selective activation of pSn down-regulated significantly the mRNA levels of IFN-α, IFN-β, IFN-γ, IFN-λ1, IFN-λ3, IFN-λ4 and TNF-α and up-regulated significantly the mRNA level of IL-10 in PAMs in vitro, suggesting that pSn signaling inhibited the transcription of innate antiviral cytokines. Further results showed that pSn1, pSn2, pSn3, pSn4 and pSn5 domains of pSn were responsible for the inhibition of levels of innate antiviral cytokines. In conclusion, our results suggested that pSn suppressed innate antiviral immune response by down-regulating the levels of innate antiviral cytokines in PAMs. It was possible that PRRSV-pSn interaction may suppress innate antiviral immune response to PRRSV infection by repressing the production of innate antiviral cytokines.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.virusres.2019.197792DOI Listing

Publication Analysis

Top Keywords

innate antiviral
36
antiviral cytokines
24
levels innate
12
antiviral immune
12
immune response
12
mrna levels
12
innate
9
antiviral
9
porcine alveolar
8
alveolar macrophages
8

Similar Publications

Isolation and identification of pigeon adenovirus 1 and analysis of its pathogenicity in pigeons and chickens.

Microb Pathog

January 2025

College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, 271018, China. Electronic address:

Pigeon adenovirus type 1 predominantly infects pigeons under 12 months of age (mainly 3-5 months old), causing major clinical symptoms such as vomiting, dehydration, and discharge of thin yellow feces. In February 2023, an outbreak of a pathogen with symptoms similar to pigeon adenovirus infections occurred on a pigeon farm in Shandong Province, which was eventually identified as pigeon adenovirus type 1. In this study, a strain of PiAdV-1 was isolated from naturally infected pigeons and named pigeon-adenovirus-1-isolate-CH-SD-2023, and the hexon gene sequence as amplified and analyzed using polymerase chain reaction (PCR).

View Article and Find Full Text PDF

Colorectal cancer (CRC) is one of the most prevalent malignant tumors in the world, and its occurrence and development are closely related to the complex immune regulatory mechanisms. As the first barrier of the body's defense, innate immunity plays a key role in tumor immune surveillance and anti-tumor response, in which type I/III interferon (IFN) is an important mediator with significant antiviral and anti-tumor functions. 5-methylcytosine (m5C) modification of RNA is a key epigenetic regulation that promotes the expression of CRC oncogenes and immune-related genes.

View Article and Find Full Text PDF

Interferon-Stimulated Genes and Immune Metabolites as Broad-Spectrum Biomarkers for Viral Infections.

Viruses

January 2025

Center for Virus-Host-Innate-Immunity, Institute for Infectious and Inflammatory Diseases, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA.

The type I interferon (IFN-I) response is a critical component of the immune defense against various viral pathogens, triggering the expression of hundreds of interferon-stimulated genes (ISGs). These ISGs encode proteins with diverse antiviral functions, targeting various stages of viral replication and restricting infection spread. Beyond their antiviral functions, ISGs and associated immune metabolites have emerged as promising broad-spectrum biomarkers that can differentiate viral infections from other conditions.

View Article and Find Full Text PDF

The first marine pestivirus, Phocoena pestivirus (PhoPeV), isolated from harbor porpoise, has been recently described. To further characterize this unique pestivirus, its host cell tropism and growth kinetics were determined in different cell lines. In addition, the interaction of PhoPeV with innate immunity in porcine epithelial cells and the role of selected cellular factors involved in the viral entry and RNA replication of PhoPeV were investigated in comparison to closely and distantly related pestiviruses.

View Article and Find Full Text PDF

The Rift Valley fever virus (RVFV) causes haemorrhagic fever, encephalitis, and permanent blindness and has been listed by the WHO as a priority pathogen. To study RVFV pathogenesis and identify small-molecule antivirals, we established a novel In Vivo model using zebrafish larvae. Pericardial injection of RVFV resulted in ~4 log viral RNA copies/larva, which was inhibited by the antiviral 2'-fluoro-2'-deoxycytidine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!