Matrix metalloproteinase-2 (MMP-2) is an endopeptidase involved in cardiovascular disease and cancer. To date, no highly selective MMP-2 inhibitors have been identified for potential use in humans. Aim of our work was to apply the nanobody technology to the generation of highly selective inhibitors of human MMP-2 and to assess their effects on platelet function and their applicability as conjugated nanobodies. We constructed a nanobody library after immunising an alpaca with human active MMP-2 and identified, after phage display and screening, one MMP-2 inhibitory nanobody (VHH-29), able to hinder the effects of MMP-2 on platelet activation, and one nanobody not inhibiting MMP-2 activity (VHH-136) which, chemically conjugated to a fluorescent probe, allowed the detection of human MMP-2 by flow-cytometry and immune-cytochemistry. In conclusion, we have generated and characterized two new nanotechnological molecular tools for human MMP-2 which represent promising agents for the study of MMP-2 in cardiovascular pathophysiology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nano.2019.102103DOI Listing

Publication Analysis

Top Keywords

human mmp-2
12
mmp-2
11
metalloproteinase-2 mmp-2
8
highly selective
8
development anti-matrix
4
anti-matrix metalloproteinase-2
4
mmp-2 nanobodies
4
nanobodies potential
4
potential therapeutic
4
therapeutic diagnostic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!