Background: Understanding the configuration of neural circuits and the specific role of distinct cortical neuron types involved in behavior, requires the study of structure-function and connectivity relationships with single cell resolution in awake behaving animals. Despite head-fixed behaving rats have been used for in vivo measuring of neuronal activity, it is a concern that head fixation could change the performance of behavioral task.
New Method: We describe the procedures for efficiently training Wistar rats to develop a behavioral task, involving planning and execution of a qualified movement in response to a visual cue under head-fixed conditions. The behavioral and movement performance in freely moving vs head-fixed conditions was analyzed.
Results: The best behavioral performance was obtained in the rats that were trained first in freely moving conditions and then placed in a head-restrained condition compared with the animals which first were habituated to head-restriction and then learned the task. Moreover, head restriction did not alter the movement performance. Stable juxtacellular recordings from sensorimotor cortex neurons were obtained while the rats were performing forelimb movements. Biocytin electroporation and retrograde tracer injections, permits identify the hodology of individual long-range projecting neurons.
Comparison With Existing Methods: Our method shows no difference in the behavioral performance of head fixed and freely moving conditions. Also includes a computer aided design of a discrete and ergonomic head-post allowing enough stability to perform juxtacellular recording and labeling of cortical neurons.
Conclusions: Our method is suitable for the in vivo characterization of neuronal circuits and their long-range connectivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jneumeth.2019.108454 | DOI Listing |
Neuromodulatory signaling is poised to serve as a neural mechanism for gain control, acting as a crucial tuning factor to influence neuronal activity by dynamically shaping excitatory and inhibitory fast neurotransmission. The endocannabinoid (eCB) signaling system, the most widely expressed neuromodulatory system in the mammalian brain, is known to filter excitatory and inhibitory inputs through retrograde, pre-synaptic action. However, whether eCBs exert retrograde gain control to ultimately facilitate reward-seeking behaviors in freely moving mammals is not established.
View Article and Find Full Text PDFUnlabelled: The integration of olfactory and spatial information is critical for guiding animal behavior. The lateral entorhinal cortex (LEC) is reciprocally interconnected with cortical areas for olfaction and the hippocampus and thus ideally positioned to encode odor-place associations. Here, we used mini-endoscopes to record neural activity in the mouse piriform cortex (PCx) and LEC.
View Article and Find Full Text PDFThe concentrations of extracellular and intracellular signaling molecules, such as dopamine and cAMP, change over both fast and slow timescales and impact downstream pathways in a cell-type specific manner. Fluorescence sensors currently used to monitor such signals are typically optimized to detect fast, relative changes in concentration of the target molecule. They are less well suited to detect slowly-changing signals and rarely provide absolute measurements of either fast and slow signaling components.
View Article and Find Full Text PDFJ Neurosci Methods
January 2025
Department of Neurosurgery, Carl-von-Ossietzky University Oldenburg, Oldenburg, Germany; Research Center Neurosensory Science, Carl-von-Ossietzky University Oldenburg, Germany. Electronic address:
Background: Spreading depolarization (SD) is an electrophysiological phenomenon of massive neuronal depolarization that occurs in a multitude of brain injuries. Clinical studies and experimental data have linked the occurrence of SDs with secondary brain damage. However, there is a translational gap because of methodological limitations between clinical and experimental approaches focusing on short-term effects.
View Article and Find Full Text PDFNeurosci Res
January 2025
RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan. Electronic address:
In mammals, lactation is essential for the health and growth of infants and supports the formation of the mother-infant bond. Breastfeeding is mediated by the neurohormone oxytocin (OT), which is released into the bloodstream in a pulsatile manner from OT neurons in the hypothalamus to promote milk ejection into mammary ducts. While classical studies using anesthetized rats have illuminated the activity patterns of putative OT neurons during breastfeeding, the molecular, cellular, and neural circuit mechanisms driving the synchronous pulsatile bursts of OT neurons in response to nipple stimulation remain largely elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!