Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: To determine whether Sway, a sway-based mobile application, predicts falls and to evaluate its discriminatory sensitivity and specificity relative to other clinical measures in identifying fallers in individuals with Parkinson disease (PD).
Design: Observational cross-sectional study.
Setting: Community.
Participants: A convenience sample of subjects with idiopathic PD in Hoehn and Yahr levels I-III (N=59).
Interventions: Participants completed a balance assessment using Sway, the Movement Disorders Systems-Unified PD Rating Scale motor examination, Mini-BESTest, Activities-specific Balance Confidence (ABC) Scale, and reported 6-month fall history. Participants also reported falls for each of the following 6 months. Binomial logistic regression was used to identify significant predictors of future fall status. Cutoff scores, sensitivity, and specificity were based on receiver operating characteristic plots.
Main Outcome Measures: Sway score.
Results: The most predictive logistic regression model included fall history, ABC Scale, and Sway (P<.001). This model explained 61% (Nagelkerke R) of the variance in fall prediction and correctly classified 85% of fallers. However, only fall history and ABC Scale were statistically significant (P<.02). Participants were 32 times more likely to fall in the future if they fell in the past. The ABC Scale and Mini Balance Evaluation Systems Test (Mini-BESTest) demonstrated greater accuracy than Sway (area under the curve=0.76, 0.72, and 0.65, respectively). Cutoff scores to identify fallers were 85% for the ABC Scale and 21 of 28 for the Mini-BESTest.
Conclusion: Sway did not improve the accuracy of predicting future fallers beyond common clinical measures and fall history.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.apmr.2019.09.013 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!