As a dietary supplement, poly-β-hydroxybutyrate (PHB) has been reported to positively influence growth, boost the immune system and enhance disease resistance in fish and shellfish. However, the protective mechanism is little known. Thus, the present study was conducted to evaluate the effect of PHB supplementation on immune-related enzyme activity and transcriptome-based gene expression in soiny mullet (Liza haematocheila). Results showed that dietary PHB supplementation could increase antioxidant enzyme activity, including total antioxidant capacity, catalase and superoxide dismutase. A total of 7,082,094,175 and 7,650,341,357 raw reads with mean length of 757 bp were obtained from control and PHB (dietary PHB supplementation at 2%) groups, respectively. There were 46,106 differentially expressed genes (DEGs) between control and PHB groups, including 21,828 upregulated and 24,278 downregulated DEGs. All the DEGs were classified into three gene ontology categories, and 312 DEGs related with immune system process and 760 with the response to a stimulus. Additionally, all DEGs were allocated to 261 Kyoto Encyclopedia of Gene and Genome pathways, and major immune-related pathways were detected, including MAPK/PI3K-Akt/TNF/NF-κB/TCR/TLR signaling pathways. Moreover, the regulation of several observed immune-related genes was confirmed by qRT-PCR. Altogether, this study suggests that antioxidant system is more effective for dietary PHB supplementation and lays the foundation for further study on the precise immunostimulatory mechanism of PHB. Hopefully, it provides insights into exploring biomarker for assessment of immunostimulants in fish culture.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fsi.2019.10.042 | DOI Listing |
Animals (Basel)
September 2024
Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science & Technology, Tianjin 300457, China.
Poly-β-hydroxybutyrate (PHB) is a bacterial metabolite produced by bacteria such as sp. that serves as a carbon and energy storage compound for bacteria under nutrient-limited conditions. Two experiments were conducted to investigate the effects of dietary supplementation with -PHB on hybrid grouper ( ♀ × .
View Article and Find Full Text PDFJ Environ Manage
November 2024
College of Marine Technology and Environment, Dalian Ocean University, Dalian, 116023, PR China; Key Laboratory of Nearshore Marine Environmental Science and Technology in Liaoning Province, Dalian Ocean University, Dalian, 116023, PR China. Electronic address:
Simultaneous nitritation and denitritation have the potential to significantly improve nitrogen removal in sewage treatment processes. However, their application in low-strength sewage treatment systems presents challenges. This study explored the impact of four solid carbon sources (SCSs) on N-removal via nitrite in a multi-cycle SBR with biocarriers.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
November 2024
Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Japan.
Duckweed is a rapid-growing plant with a high starch and low lignin content. The duckweed was saccharified via dual enzymatic treatment using amylase and cellulase complex. The duckweed-derived glucose was utilized for polyhydroxybutyrate (PHB) production in engineered Escherichia coli.
View Article and Find Full Text PDFMar Biotechnol (NY)
June 2024
Department of Marine Life Sciences, Jeju National University, Jeju, 63243, South Korea.
This study assessed the effects of dietary supplementation of poly-β-hydroxybutyrate (PHB) on growth performance, feed efficiency, non-specific immunity, digestive enzyme capacity, phagocytic activity, hemocyte count, intestinal morphology, and disease resistance against Vibrio parahaemolyticus of Pacific white shrimp (Penaeus vannamei). Six diets were prepared by supplementing graded levels of PHB at 0.00, 0.
View Article and Find Full Text PDFMicrob Cell Fact
February 2024
College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, China.
Acetoin, a versatile platform chemical and popular food additive, poses a challenge to the biosafety strain Bacillus subtilis when produced in high concentrations due to its intrinsic toxicity. Incorporating the PHB synthesis pathway into Bacillus subtilis 168 has been shown to significantly enhance the strain's acetoin tolerance. This study aims to elucidate the molecular mechanisms underlying the response of B.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!