Similar Publications

Integrating functional materials with photonic and optoelectronic technologies has revolutionized medical diagnostics, enhancing imaging and sensing capabilities. This review provides a comprehensive overview of recent innovations in functional materials, such as quantum dots, perovskites, plasmonic nanomaterials, and organic semiconductors, which have been instrumental in the development of diagnostic devices characterized by high sensitivity, specificity, and resolution. Their unique optical properties enable real-time monitoring of biological processes, advancing early disease detection and personalized treatment.

View Article and Find Full Text PDF

Self-assembled bottlebrush block copolymers (BBCPs) offer a vibrant, eco-friendly alternative to traditional toxic pigments and dyes, providing vivid structural colors with significantly reduced environmental impact. Scaling up the synthesis of these polymers for practical applications has been challenging with conventional batch methods, which suffer from slow mass and heat transfer, inadequate mixing, and issues with reproducibility. Precise control over molecular weight and dispersity remains a significant challenge for achieving finely tuned color appearances.

View Article and Find Full Text PDF

An online segmented continuous flow analysis system for rapid determining chemical oxygen demand in seawater to assess organic pollution levels.

Mar Pollut Bull

January 2025

Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai, Shandong 264003, China. Electronic address:

By integrating ultraviolet (UV) photocatalytic oxidation digestion with segmented continuous flow analysis technology, an online measurement method and analysis system for the alkaline chemical oxygen demand (COD) in seawater, based on the color-change reaction of potassium permanganate, has been established. This represents the first application of UV photocatalytic oxidation technology in the measurement of COD in seawater. The system effectively overcomes the limitations of high-temperature and high-pressure digestion methods employed in traditional COD analysis.

View Article and Find Full Text PDF

The cyclic triangular complex - silver (I) 4-nitro-3,5-bis(trifluoromethyl)pyrazolate (Agpz) with super π-acidity shows great potential in adsorptive desulfurization (ADS) as a novel adsorbent, however, it fails to work well in the continue flow adsorption study. In order to improve its dynamic adsorption performance, a composite has been prepared by mixing Agpz and multilayer graphene (MG) in methanol. Based on the results of characterization by FT-IR, XPS, SEM, and so on, the optimal mass ratio of Agpz:MG in the synthesis is 0.

View Article and Find Full Text PDF

Continuous-flow phosphate removal using Cry-Ca-COS Monolith: Insights from dynamic adsorption modeling.

Water Res X

May 2025

Integrated Science and Technology Research Center, Faculty of Technology and Environment, Prince of Songkla University, Phuket Campus, Kathu, Phuket 83120 Thailand.

This study rigorously evaluates the adsorption performance of the Cry-Ca-COS monolith for phosphate removal in a column operation mode. Characterization of the material both before and after exhaustion in a continuous flow system (column form) showed no difference compared to results from a batch system (tablet form). The XPS results indicated that the adsorption mechanism of phosphate on the Cry-Ca-COS column involved surface microprecipitation and ligand exchange (inner-sphere complexation).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!