Activins regulate bone formation by controlling osteoclasts and osteoblasts. We investigated Activin-A mechanism of action on human osteoblast mineralization, RNA and microRNA (miRNA) expression profile. A single 2-day treatment of Activin-A at Day 5 of osteoblast differentiation significantly reduced matrix mineralization. Activin A-treated osteoblasts responded with transient change in gene expression, in a 2-wave-fashion. The 38 genes differentially regulated during the first wave (within 8 hr after Activin A start) were involved in transcription regulation. In the second wave (1-2 days after Activin A start), 65 genes were differentially regulated and related to extracellular matrix. Differentially expressed genes in both waves were associated to transforming growth factor beta signaling. We identified which microRNAs modulating osteoblast differentiation were regulated by Activin-A. In summary, 2-day treatment with Activin-A in premineralization period of osteoblast cultures influenced miRNAs, gene transcription, and reduced matrix mineralization. Modulation of Activin A signaling might be useful to control bone quality for therapeutic purposes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7028110PMC
http://dx.doi.org/10.1002/jcp.29365DOI Listing

Publication Analysis

Top Keywords

matrix mineralization
12
transient change
8
gene expression
8
2-day treatment
8
treatment activin-a
8
osteoblast differentiation
8
reduced matrix
8
genes differentially
8
differentially regulated
8
activin start
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!