External electric fields (E) induce a spatially heterogeneous variation in the membrane potential (ΔV) of cardiomyocytes that, if sufficiently large, results in an action potential and contraction. Insights into the phenomenon of ΔV induction by E have been classically gained with electromagnetic models due to the lack of adequate experimental approaches. However, it is not clear yet how reliable these models are. To assess the accuracy of commonly used models, a reference 3D numerical model for cardiomyocytes (NMReal) was developed, consisting of the cell membrane shell reconstructed from rendered confocal microscopy images of freshly isolated ventricular myocytes. NMReal was used to estimate the E-induced maximum ΔV values (ΔV), which were compared with estimates from seven other electromagnetic models. Accurate ΔV estimates (average error < 2%) were obtained with a less complex 3D model (NM3D) based on the extruded 2D image of the cell longitudinal section. Acceptable ΔV estimates (average error < 5%) were obtained with the prolate spheroid analytical model (PSAM) when the angle of E incidence and the cell major axis was < 30°. In this case, PSAM, a much simpler model requiring only the measurement of the longitudinal and transversal cell dimensions, can be a suitable alternative for ΔV calculation. Graphical abstract (A) Confocal images of the cell were used to reconstruct the realistic geometry of cardiomyocytes (NMReal). (B) NMReal was used to estimate the maximum variation in the transmembrane potential (ΔV) induced by an external electric field (E) applied at different angles with respect to the cell major axis. Plus (anode) and minus (cathode) signs indicate electrode position (E direction is from minus to plus). (C) Relative error (vs. NMReal) of ΔV estimation with simplified electromagnetic models, presented in descending order of accuracy (left-to-right, top-to-bottom). NM2D: 2D numerical model based on the longitudinal cell image; NM3D: numerical model based on the z extrusion of NM2D; EAM, PSAM, and CAM: ellipsoidal, prolate spheroidal, and cylindrical analytical models, respectively; PNM and CNM: parallelepipedal and cylindrical numerical models, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11517-019-02054-2 | DOI Listing |
IEEE Trans Med Robot Bionics
November 2024
Department of Cardiovascular Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
This paper introduces a novel magnetic navigation system for cardiac ablation. The system is formed from two key elements: a magnetic ablation catheter consisting of a chain of spherical permanent magnets; and an actuation system comprised of two cart-mounted permanent magnets undergoing pure rotation. The catheter design enables a large magnetic content with the goal of minimizing the footprint of the actuation system for easier integration with the clinical workflow.
View Article and Find Full Text PDFLuminescence
January 2025
Analytical Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt.
Herein, highly fluorescent sulfur and nitrogen co-doped carbon dots (N, S-CDs) had been employed as a fluorescent probe to analyze Cu in drinking water. The biogenic creatinine is known to form a stable complex with Cu; hence, it was rationally selected as a bioinspired nitrogen substrate for the first time to enhance N, S-CDs selectivity towards Cu. Moreover, the literature was surveyed to guide the selection of sulfur and carbon sources to optimize N, S-CDs quantum yield (QY), so thiourea and disodium edetate are co-carbonized with biogenic creatinine at 270°C for 40 min and characterized using different techniques.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG), UMR 7586, CNRS, Université Paris Diderot, 8, Pace Aurélie Nemours, 75013 Paris, France.
Accurate protein synthesis requires ribosomes to integrate signals from distant functional sites and execute complex dynamics. Despite advances in understanding ribosome structure and function, two key questions remain: how information is transmitted between these distant sites, and how ribosomal movements are synchronized? We recently highlighted the existence of ribosomal protein networks, likely evolved to participate in ribosome signaling. Here, we investigate the relationship between ribosomal protein networks and ribosome dynamics.
View Article and Find Full Text PDFPLoS One
January 2025
Faculty of Engineering (FOE), Multimedia University (MMU), Cyberjaya, Selangor, Malaysia.
Cancer and its diverse variations pose one of the most significant threats to human health and well-being. One of the most aggressive forms is blood cancer, originating from bone marrow cells and disrupting the production of normal blood cells. The incidence of blood cancer is steadily increasing, driven by both genetic and environmental factors.
View Article and Find Full Text PDFPLoS One
January 2025
CICESE, Ensenada, Baja California, Mexico.
The 5G network was developed to push the capabilities of wireless networks to previously unseen performance limits, e.g., transmission rates of several gigabits per second, latency of less than a millisecond, and millions of devices connected at the same time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!