A proposed paradigm for out-of-equilibrium quantum systems is that an analog of quantum phase transitions exists between parameter regimes of qualitatively distinct time-dependent behavior. Here, we present evidence of such a transition between dynamical phases in a cold-atom quantum simulator of the collective Heisenberg model. Our simulator encodes spin in the hyperfine states of ultracold fermionic potassium. Atoms are pinned in a network of single-particle modes, whose spatial extent emulates the long-range interactions of traditional quantum magnets. We find that below a critical interaction strength, magnetization of an initially polarized fermionic gas decays quickly, while above the transition point, the magnetization becomes long-lived because of an energy gap that protects against dephasing by the inhomogeneous axial field. Our quantum simulation reveals a nonequilibrium transition predicted to exist but not yet directly observed in quenched s-wave superconductors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6802963 | PMC |
http://dx.doi.org/10.1126/sciadv.aax1568 | DOI Listing |
Examining the impacts of natural and anthropogenic influences on aquatic macrophytes in shallow lakes is crucial for their effective restoration and management. However, there is a lack of direct evidence regarding past species composition or detailed and continuous evidence of recent changes in aquatic macrophyte communities. This study utilized plant macrofossil remains deposited in the sediment, combined with macrophyte surveys from 1983 to 2010, to reconstruct the historical changes in the macrophyte community over approximately 160 years in Lake Weishan, a sub-lake of Lake Nansi located in the lower Yellow River (Huanghe River) Basin, northern China.
View Article and Find Full Text PDFFront Genet
January 2025
Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
Small cell carcinoma of the esophagus (SCCE) is a rare and aggressively progressing malignancy that presents considerable clinical challenges.Although chemotherapy can effectively manage symptoms during the earlystages of SCCE, its long-term effectiveness is notably limited, with theunderlying mechanisms remaining largely undefined. In this study, weemployed single-cell RNA sequencing (scRNA-seq) to analyze SCCE samplesfrom a single patient both before and after chemotherapy treatment.
View Article and Find Full Text PDFRSC Adv
January 2025
College of Agriculture and Biological Science, Dali University Dali 671000 China
The conformational dynamics and activation mechanisms of KRAS proteins are of great importance for targeted cancer therapy. However, the detailed molecular mechanics of KRAS activation induced by GTP binding remains unclear. In this study, we systematically investigated how GTP/GDP exchange affects the thermodynamic and kinetic properties of KRAS and explored the activation mechanism using molecular dynamics (MD) simulations, Markov state models (MSMs), and neural relational inference (NRI) models.
View Article and Find Full Text PDFBioact Mater
April 2025
Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, China.
Gelatin-based biomaterials have emerged as promising candidates for bioadhesives due to their biodegradability and biocompatibility. However, they often face limitations due to the uncontrollable phase transition of gelatin, which is dominated by hydrogen bonds between peptide chains. Here, we developed controllable phase transition gelatin-based (CPTG) bioadhesives by regulating the dynamic balance of hydrogen bonds between the peptide chains using 2-hydroxyethylurea (HU) and punicalagin (PA).
View Article and Find Full Text PDFBMC Oral Health
January 2025
Department of Conservative Dentistry, School of Dentistry, Dental Research Institute, Dental and Life Science Institute, Pusan National University, Yangsan, Korea.
Background: This study compared the torsional resistance, bending stiffness, and cyclic fatigue resistances of different heat-treated NiTi files for minimally invasive instrumentation.
Methods: TruNatomy (TN) and EndoRoad (ER) file systems were compared with ProTaper Gold (PG). Torsional load, distortion angle, and bending stiffness were assessed using a custom device AEndoS, and toughness was calculated using the torsional data.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!