Diabetes mellitus (DM) is a kind of chronic metabolic disease that could be characterized by uncontrollable high blood glucose (hyperglycemia) over a prolonged period and diverse complications in various organs. These complications include activation of stress responses in bone such as oxidative stress and inflammation, which have been implicated in various bone diseases, including osteoporosis. Non-enzymatic glycation of proteins form and accumulate in patients under hyperglycemia condition. Methylglyoxal (MG) is a reactive advanced glycation end-product precursor. Abnormal high concentration of MG was in serum of diabetic patients. It was proven that MG induces various stress responses. This indicates that it might possibly the key metabolite leading to diabetes-associated bone loss. In this data report, using cell models, the underlying mechanism of methylglyoxal on osteoclast that may lead to bone loss was investigated. In cell cultures, RAW264.7, Macrophages, was treated with methylglyoxal and gene expressions of osteoclast bone biomarkers were investigated. Furthermore, the inhibitions of p38 and p44/42 activities were employed to investigate the osteoclast biomarkers CTSK, OSCAR, and TRACP5 gene expressions. These data implied that MG activated the p38 and p44/42, which was reported to regulate proliferation and differentiation of osteoclast. However, the decreasing MAPK though siRNA knockdown did not change expression of those target markers, TRACP5, OSCAR, and CTSK, in mRNA level. The effects of MG to other osteoclast markers through p38 and p44/42 would be worth to be investigated. For more insight please see Methylglyoxal Activates Osteoclasts through JNK Pathway leading to Osteoporosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6811967 | PMC |
http://dx.doi.org/10.1016/j.dib.2019.104500 | DOI Listing |
Biomol Ther (Seoul)
November 2024
Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.
The aim of this study was to evaluate emodin, a natural trihydroxyanthraquinone compound found in the roots and barks of several plants including rhubarb and buckthorn, might attenuate epidermal growth factor (EGF)-induced airway MUC5AC mucin gene expression. The human pulmonary mucoepidermoid NCI-H292 cells were pretreated with for 30 min and then stimulated with EGF for the following 24 h. The effect of emodin on EGF-induced mitogen-activated protein kinase (MAPK) signaling pathway was examined.
View Article and Find Full Text PDFJ Appl Toxicol
September 2024
Department of Chemistry, Tennessee State University, Nashville, TN, USA.
Hexabromocyclododecane (HBCD) is an environmental contaminant due to its use as a flame retardant in a variety of applications ranging from building insulation, furniture upholstery, and housing for appliances and electronics. HBCD is found in wildlife, human breastmilk, and serum. Interleukin 1-beta (IL-1β) and interleukin 6 (IL-6) are pro-inflammatory cytokines, whose dysregulation is associated with chronic inflammation and the pathologies that result, such as tumor growth, rheumatoid arthritis, Crohn's disease, and multiple sclerosis.
View Article and Find Full Text PDFBiomed Pharmacother
May 2024
Department of Anesthesiology and Intensive Care Medicine, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knöll-Str. 2. Jena D-07745, Germany; Center for Sepsis Control and Care, Jena University Hospital, Jena 07740, Germany. Electronic address:
Sepsis is characterized as life-threatening organ dysfunction caused by a dysregulated host response to an infection. Despite numerous clinical trials that addressed this syndrome, there is still no causative treatment available to dampen its severity. Curtailing the infection at an early stage with anti-infectives is the only effective treatment regime besides intensive care.
View Article and Find Full Text PDFJ Biol Chem
January 2024
Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. Electronic address:
Macrophages play critical roles in inflammation and tissue homeostasis, and their functions are regulated by various autocrine, paracrine, and endocrine factors. We have previously shown that CTRP6, a secreted protein of the C1q family, targets both adipocytes and macrophages to promote obesity-linked inflammation. However, the gene programs and signaling pathways directly regulated by CTRP6 in macrophages remain unknown.
View Article and Find Full Text PDFAsian Spine J
December 2023
Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
Study Design: This experimental study was performed using human ligamentum flavum-derived cells (HFCs).
Purpose: To investigate the intracellular signaling mechanism of interleukin-6 (IL-6) secretion in transforming growth factor-β (TGF- β)-stimulated HFCs.
Overview Of Literature: Lumbar spinal stenosis (LSS) is a prevalent disease among the elderly, characterized by debilitating pain in the lower extremities.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!