Reacting fast to visual stimuli is important for many activities of daily living and sports. It remains unknown whether the strategy used during the anticipatory period influences the speed of the reaction. The purpose of this study was to determine if reaction time (RT) differs following a steady and a dynamic anticipatory strategy. Twenty-two young adults (21.0 ± 2.2 yrs, 13 women) participated in this study. Participants performed 15 trials of a reaction time task with ankle dorsiflexion using a steady (steady force at 15% MVC) and a dynamic (oscillating force from 10-20% MVC) anticipatory strategy. We recorded primary agonist muscle (tibialis anterior; TA) electromyographic (EMG) activity. We quantified RT as the time interval from the onset of the stimulus to the onset of force. We found that a dynamic anticipatory strategy, compared to the steady anticipatory strategy, resulted in a longer RT (p = 0.04). We classified trials of the dynamic condition based on the level and direction of anticipatory force at the moment of the response. We found that RT was longer during the middle descending relative to the middle ascending and the steady conditions (p < 0.01). All together, these results suggest that RT is longer when preceded by a dynamic anticipatory strategy. Specifically, the longer RT is a consequence of the variable direction of force at which the response can occur, which challenges the motor planning process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6815071 | PMC |
http://dx.doi.org/10.2478/hukin-2019-0025 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!