Whole-cell biosensing by siderophore-based molecular recognition and localized surface plasmon resonance.

Anal Methods

Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA. ; Tel: +1-574-631-1849.

Published: January 2019

A siderophore-based active bacterial pull-down strategy was integrated in a localized surface plasmon resonance (LSPR) sensing platform and subsequently tested by detecting whole-cell . The LSPR-based whole-cell sensing approach was previously demonstrated with aptamer-based molecular recognition motifs, and here it is extended to the powerful siderophore system, which exploits the natural bacterial need to sequester Fe(III). Specifically, a biscatecholate-monohydroxamate mixed ligand siderophore linked to a biotin three polyethylene glycol repeating units was synthesized and immobilized on Au trigonal nanoprisms of an LSPR sensor. The resulting surface-confined biotinylated siderophore subsequently chelated Fe(III), forming a siderophore-Fe(III) complex which was shown to be competent to recognize . Target bacteria were captured and then detected by measuring wavelength shifts in the LSPR extinction spectrum. This siderophore pull-down LSPR biosensor approach is rapid (≤3 h detection) and sensitive - with a limit of detection (LOD) of 80 bacterial cells and a linear wavelength shift over the range 4 × 10 to 4 × 10 cfu mL. As intended by design, the siderophore-based biosensor was selective for over and and was stable in ambient conditions for up to 2 weeks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6820853PMC
http://dx.doi.org/10.1039/C8AY02180EDOI Listing

Publication Analysis

Top Keywords

molecular recognition
8
localized surface
8
surface plasmon
8
plasmon resonance
8
whole-cell biosensing
4
biosensing siderophore-based
4
siderophore-based molecular
4
recognition localized
4
resonance siderophore-based
4
siderophore-based active
4

Similar Publications

The nutrient germinant receptors (GRs) in spores of Bacillus species consist of a cluster of three proteins- designated A, B, and C subunits- that play a critical role in initiating the germination of dormant spores in response to specific nutrient molecules. The Bacillus cereus GerI GR is essential for inosine-induced germination; however, the roles of the individual subunits and the mechanism by which germinant binding activates GR function remain unclear. In this study, we report the backbone chemical shift assignments of the N-terminal domain (NTD) of the A subunit of GerI (GerIA).

View Article and Find Full Text PDF

Cryo-EM reveals cholesterol binding in the lysosomal GPCR-like protein LYCHOS.

Nat Struct Mol Biol

January 2025

Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.

Cholesterol plays a pivotal role in modulating the activity of mechanistic target of rapamycin complex 1 (mTOR1), thereby regulating cell growth and metabolic homeostasis. LYCHOS, a lysosome-localized G-protein-coupled receptor-like protein, emerges as a cholesterol sensor and is capable of transducing the cholesterol signal to affect the mTORC1 function. However, the precise mechanism by which LYCHOS recognizes cholesterol remains unknown.

View Article and Find Full Text PDF

Nr4a1 and Nr4a3 redundantly control clonal deletion and contribute to an anergy-like transcriptome in auto-reactive thymocytes to impose tolerance in mice.

Nat Commun

January 2025

Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, CA, 94143, USA.

The Nr4a nuclear hormone receptors are transcriptionally upregulated in response to antigen recognition by the T cell receptor (TCR) in the thymus and are implicated in clonal deletion, but the mechanisms by which they operate are not clear. Moreover, their role in central tolerance is obscured by redundancy among the Nr4a family members and by their reported functions in Treg generation and maintenance. Here we take advantage of competitive bone marrow chimeras and the OT-II/RIPmOVA model to show that Nr4a1 and Nr4a3 are essential for the upregulation of Bcl2l11/BIM and thymic clonal deletion by self-antigen.

View Article and Find Full Text PDF

Tumor-derived extracellular vesicles (T-EVs) PD-L1 are an important biomarker for predicting immunotherapy response and can help us understand the mechanism of resistance to immunotherapy. However, this is due to the interference from a large proportion of nontumor-derived EVs. It is still challenging to accurately analyze T-EVs PD-L1 in complex human fluids.

View Article and Find Full Text PDF

Oral administration of LEAP2 enhances immunity against Edwardsiella tarda through regulation of gut bacterial community and metabolite in mudskipper.

Fish Shellfish Immunol

January 2025

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, P.R. China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China; Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, P.R. China. Electronic address:

The liver-expressed antimicrobial peptide 2 (LEAP2) is gaining recognition for its immune regulatory functions beyond direct antimicrobial activity. In this study, we investigated the role of mudskipper (Boleophthalmus pectinirostris) LEAP2 (BpLEAP2) in enhancing the survival, gut health, and immune resilience against Edwardsiella tarda infection. Pre-oral delivery of BpLEAP2 significantly improved survival rates and mitigated infection-induced damage to the gut, as evidenced by preserved villus length and goblet cell count.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!