Immunosuppression increases the risk of cancers that are associated with viral infection. In particular, the risk of squamous cell carcinoma of the skin-which has been associated with beta human papillomavirus (β-HPV) infection-is increased by more than 100-fold in immunosuppressed patients. Previous studies have not established a causative role for HPVs in driving the development of skin cancer. Here we show that T cell immunity against commensal papillomaviruses suppresses skin cancer in immunocompetent hosts, and the loss of this immunity-rather than the oncogenic effect of HPVs-causes the markedly increased risk of skin cancer in immunosuppressed patients. To investigate the effects of papillomavirus on carcinogen-driven skin cancer, we colonized several strains of immunocompetent mice with mouse papillomavirus type 1 (MmuPV1). Mice with natural immunity against MmuPV1 after colonization and acquired immunity through the transfer of T cells from immune mice or by MmuPV1 vaccination were protected against skin carcinogenesis induced by chemicals or by ultraviolet radiation in a manner dependent on CD8 T cells. RNA and DNA in situ hybridization probes for 25 commensal β-HPVs revealed a significant reduction in viral activity and load in human skin cancer compared with the adjacent healthy skin, suggesting a strong immune selection against virus-positive malignant cells. Consistently, E7 peptides from β-HPVs activated CD8 T cells from unaffected human skin. Our findings reveal a beneficial role for commensal viruses and establish a foundation for immune-based approaches that could block the development of skin cancer by boosting immunity against the commensal HPVs present in all of our skin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6872936PMC
http://dx.doi.org/10.1038/s41586-019-1719-9DOI Listing

Publication Analysis

Top Keywords

skin cancer
28
immunity commensal
12
skin
11
commensal papillomaviruses
8
immunosuppressed patients
8
development skin
8
cd8 cells
8
human skin
8
cancer
7
immunity
5

Similar Publications

Low-dose methotrexate in Rheumatology: A reinvented drug.

J R Coll Physicians Edinb

January 2025

Department of Rheumatology, Centre for Rheumatology, Calicut, Kerala, India.

Low-dose methotrexate (LD-MTX) is the anchor drug used in the treatment of various rheumatological illnesses. There are a lot of misconceptions associated with the long-term use of MTX in the minds of practitioners. The origin of most of these myths stems from the ill effects associated with high-dose MTX used in cancer chemotherapy.

View Article and Find Full Text PDF

Like other vertebrates, amphibians possess innate and adaptive immune systems. At the center of the adaptive immune system is the Major Histocompatibility Complex. The important molecules of innate immunity are antimicrobial peptides (AMPs).

View Article and Find Full Text PDF

Purpose Low-dose total skin electron beam therapy (LD-TSEBT) has recently gained popularity in treating mycosis fungoides (MF) due to its reduced toxicity and favorable response rates. Combining accelerated LD-TSEBT with the modified Stanford technique (mST), a condensed cycling approach, offers a promising and convenient option. However, in vivo dosimetry data confirming the effectiveness of this approach is limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!