The Fanconi anaemia (FA) pathway repairs DNA damage caused by endogenous and chemotherapy-induced DNA crosslinks, and responds to replication stress. Genetic inactivation of this pathway by mutation of genes encoding FA complementation group (FANC) proteins impairs development, prevents blood production and promotes cancer. The key molecular step in the FA pathway is the monoubiquitination of a pseudosymmetric heterodimer of FANCD2-FANCI by the FA core complex-a megadalton multiprotein E3 ubiquitin ligase. Monoubiquitinated FANCD2 then recruits additional protein factors to remove the DNA crosslink or to stabilize the stalled replication fork. A molecular structure of the FA core complex would explain how it acts to maintain genome stability. Here we reconstituted an active, recombinant FA core complex, and used cryo-electron microscopy and mass spectrometry to determine its structure. The FA core complex comprises two central dimers of the FANCB and FA-associated protein of 100 kDa (FAAP100) subunits, flanked by two copies of the RING finger subunit, FANCL. These two heterotrimers act as a scaffold to assemble the remaining five subunits, resulting in an extended asymmetric structure. Destabilization of the scaffold would disrupt the entire complex, resulting in a non-functional FA pathway. Thus, the structure provides a mechanistic basis for the low numbers of patients with mutations in FANCB, FANCL and FAAP100. Despite a lack of sequence homology, FANCB and FAAP100 adopt similar structures. The two FANCL subunits are in different conformations at opposite ends of the complex, suggesting that each FANCL has a distinct role. This structural and functional asymmetry of dimeric RING finger domains may be a general feature of E3 ligases. The cryo-electron microscopy structure of the FA core complex provides a foundation for a detailed understanding of its E3 ubiquitin ligase activity and DNA interstrand crosslink repair.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6858856PMC
http://dx.doi.org/10.1038/s41586-019-1703-4DOI Listing

Publication Analysis

Top Keywords

core complex
16
structure core
12
fanconi anaemia
8
ubiquitin ligase
8
cryo-electron microscopy
8
ring finger
8
complex
7
structure
6
core
5
structure fanconi
4

Similar Publications

MTIOT: Identifying HPV subtypes from multiple infection data.

Comput Struct Biotechnol J

December 2024

Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China.

Persistent infection with high-risk human papillomavirus (hrHPV) is a major cause of cervical cancer. The effectiveness of current HPV-DNA testing, which is crucial for early detection, is limited in several aspects, including low sensitivity, accuracy issues, and the inability to perform comprehensive hrHPV typing. To address these limitations, we introduce MTIOT (Multiple subTypes In One Time), a novel detection method that utilizes machine learning with a new multichannel integration scheme to enhance HPV-DNA analysis.

View Article and Find Full Text PDF

Across the world, emergency department nurses care for patients around the clock all year long. They perform tasks ranging from direct nursing care to managing patient flow, working in an environment characterised by interdependencies among numerous actors. The complex context in which emergency nurses operate has not been thoroughly described or discussed, indicating a knowledge gap.

View Article and Find Full Text PDF

Background: Migraine represents a chronic neurological disorder characterized by high prevalence, substantial disability rates, and significant economic burden. Its pathogenesis is complex, and there is currently no cure. The rapid progress in multi-omics technologies has provided new tools to uncover the intricate pathological mechanisms underlying migraine.

View Article and Find Full Text PDF

26S Proteasome Subunit SlPBB2 Regulates Fruit Development and Ripening in Tomato.

J Agric Food Chem

January 2025

Fruit Biology Laboratory, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.

Proteasomes are protein complexes responsible for degrading unneeded or damaged proteins through proteolysis and play critical roles in regulating plant development and response to environmental stresses. However, it is still unclear whether proteasomes regulate fruit development and ripening. In this study, we investigated the function of a core proteasome subunit, SlPBB2, in tomato fruit.

View Article and Find Full Text PDF

Dynamics of microbial communities and metabolites during the fermentation of Ningxia goji berry wine: An integrated metagenomics and metabolomics approach.

Food Res Int

February 2025

Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China. Electronic address:

Ningxia Goji Berry Wine (NGBW), a traditional Chinese fermented beverage, exhibits complex flavor quality changes during fermentation, the mechanisms of which remain insufficiently elucidated. This study aimed to elucidate the dynamic shifts in physicochemical properties, metabolites, and microbial communities throughout the controlled fermentation process of NGBW. Metabolomic analysis identified 8 key differential volatile metabolites (VOCs) and 406 differential non-volatile metabolites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!