The ventral tegmental area dopamine (VTA-DA) mesolimbic circuit processes emotional, motivational, and social reward associations together with their more demanding cognitive aspects that involve the mesocortical circuitry. Coping with stress increases VTA-DA excitability, but when the stressor becomes chronic the VTA-DA circuit is less active, which may lead to degeneration and local microglial activation. This switch between activation and inhibition of VTA-DA neurons is modulated by e.g. corticotropin-releasing hormone (CRH), opioids, brain-derived neurotrophic factor (BDNF), and the adrenal glucocorticoids. These actions are coordinated with energy-demanding stress-coping styles to promote behavioral adaptation. The VTA circuits show sexual dimorphism that is programmed by sex hormones during perinatal life in a manner that can be affected by glucocorticoid exposure. We conclude that insight in the role of stress in VTA-DA plasticity and connectivity, during reward processing and stress-coping, will be helpful to better understand the mechanism of resilience to breakdown of adaptation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neubiorev.2019.10.015 | DOI Listing |
The ventral tegmental area (VTA), a midbrain region associated with motivated behaviors, consists predominantly of dopaminergic (DA) neurons and GABAergic (GABA) neurons. Previous work has suggested that VTA GABA neurons provide a reward prediction, which is used in computing a reward prediction error. In this study, using in vivo electrophysiology and continuous quantification of force exertion in head-fixed mice, we discovered distinct populations of VTA GABA neurons that exhibited precise force tuning independently of learning, reward prediction, and outcome valence.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Anesthesiology, Center for Clinical Pharmacology, Washington University Pain Center, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
Distinct excitatory synaptic inputs to the locus coeruleus (LC) modulate behavioral flexibility. Here we identify a novel monosynaptic glutamatergic input to the LC from the ventral tegmental area (VTA). We show robust VTA axonal projections provide direct glutamatergic transmission to LC.
View Article and Find Full Text PDFEur J Pharmacol
January 2025
Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430048, China; Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China.
Prog Neuropsychopharmacol Biol Psychiatry
December 2024
Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Taian 271016, China. Electronic address:
Background And Purpose: Autism spectrum disorder (ASD) is clinically heterogeneous, and resent neuroimaging studies have shown the presence of brain structural heterogeneity in ASD. However, there is currently a lack of evidence for systemic level brain structural heterogeneity. This study aimed to reveal the heterogeneity of brain structural changes at the systemic level in ASD patients through individual differential structural covariance network (IDSCN) analysis.
View Article and Find Full Text PDFMol Brain
December 2024
Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea.
Rapid adaptation to novel environments is crucial for survival, and this ability is impaired in many neuropsychiatric disorders. Understanding neural adaptation to novelty exposure therefore has therapeutic implications. Here, I found that novelty induces time-dependent theta (4-12Hz) oscillatory dynamics in brain circuits including the medial prefrontal cortex (mPFC), ventral hippocampus (vHPC), and ventral tegmental area (VTA), but not dorsal hippocampus (dHPC), as mice adapt to a novel environment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!