The Spatial Extent of Optogenetic Silencing in Transgenic Mice Expressing Channelrhodopsin in Inhibitory Interneurons.

Cell Rep

Institute of Neurophysiology, Neuroscience Center, Goethe University, Frankfurt, Germany. Electronic address:

Published: October 2019

Optogenetic stimulation of inhibitory interneurons has become a commonly used strategy for silencing neuronal activity. This is typically achieved using transgenic mice expressing excitatory opsins in inhibitory interneurons throughout the brain, raising the question of how spatially extensive the resulting inhibition is. Here, we characterize neuronal silencing in VGAT-ChR2 mice, which express channelrhodopsin-2 in inhibitory interneurons, as a function of light intensity and distance from the light source in several cortical and subcortical regions. We show that light stimulation, even at relatively low intensities, causes inhibition not only in brain regions targeted for silencing but also in their subjacent areas. In contrast, virus-mediated expression of an inhibitory opsin enables robust silencing that is restricted to the region of opsin expression. Our results reveal important constraints on using inhibitory interneuron activation to silence neuronal activity and emphasize the necessity of carefully controlling light stimulation parameters when using this silencing strategy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2019.09.049DOI Listing

Publication Analysis

Top Keywords

inhibitory interneurons
16
transgenic mice
8
mice expressing
8
neuronal activity
8
light stimulation
8
silencing
6
inhibitory
6
spatial extent
4
extent optogenetic
4
optogenetic silencing
4

Similar Publications

Activation of the brain-penetrant beta3-adrenergic receptor (Adrb3) is implicated in the treatment of depressive disorders. Enhancing GABAergic inputs from interneurons onto pyramidal cells of prefrontal cortex (PFC) represents a strategy for antidepressant therapies. Here, we probed the effects of the activation of Adrb3 on GABAergic transmission onto pyramidal neurons in the PFC using in vitro electrophysiology.

View Article and Find Full Text PDF

Somatostatin-expressing neurons in the medial prefrontal cortex promote sevoflurane anesthesia in mice.

Anesthesiology

January 2025

Key Laboratory of Brain Science, Key Laboratory of Anesthesia and Organ Protection of Ministry of Education (In Cultivation), Zunyi Medical University, Zunyi, 563100, Guizhou Province, China.

Background: The medial prefrontal cortex plays a crucial role in regulating consciousness. However, the specific functions of its excitatory and inhibitory networks during anesthesia remain uncertain. Here we explored the hypothesis that somatostatin interneurons in the medial prefrontal cortex enhance the effects of sevoflurane anesthesia by increasing GABA transmission to pyramidal neurons.

View Article and Find Full Text PDF

Organisms continually tune their perceptual systems to the features they encounter in their environment . We have studied how ongoing experience reorganizes the synaptic connectivity of neurons in the olfactory (piriform) cortex of the mouse. We developed an approach to measure synaptic connectivity , training a deep convolutional network to reliably identify monosynaptic connections from the spike-time cross-correlograms of 4.

View Article and Find Full Text PDF

Background: A significant proportion of individuals maintain healthy cognitive function despite having extensive Alzheimer's disease (AD) pathology, known as cognitive resilience. Understanding the molecular mechanisms that protect these individuals can identify therapeutic targets for AD dementia. This study aims to define molecular and cellular signatures of cognitive resilience, protection and resistance, by integrating genetics, bulk RNA, and single-nucleus RNA sequencing data across multiple brain regions from AD, resilient, and control individuals.

View Article and Find Full Text PDF

Background: N-methyl-D-aspartate type glutamate receptors (NMDARs) are fundamental to neuronal physiology and pathophysiology. The prefrontal cortex (PFC), a key region for cognitive function, is heavily implicated in neuropsychiatric disorders, positioning the modulation of its glutamatergic neurotransmission as a promising therapeutic target. Our recently published findings indicate that AT receptor activation enhances NMDAR activity in layer V pyramidal neurons of the rat PFC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!