Gait freezing is a complex and devastating paroxysmal motor arrest commonly suffered in Parkinson's disease that causes significant impairment to mobility, commonly resulting in falls and subsequent injury. The neurobiological basis of gait freezing in Parkinson's disease is poorly understood and thus, currently available therapies are partially effective at best. We used a validated virtual reality gait paradigm to elicit freezing behaviour intraoperatively in eight patients undergoing subthalamic nucleus deep brain stimulation surgery while microelectrode recordings were obtained. This allowed us to directly test the hypothesis that increases in pathological multi-unit activity in the subthalamic nucleus are associated with freezing onset in real time, manifest as dysfunctional firing of lower limb muscles typical of freezing that were detected by EMG. We present evidence that freezing is related to transient increases in pathological subthalamic nucleus activity. We performed time-frequency analysis to characterize the oscillatory dynamics of subthalamic nucleus activity coincident with freezing onset, demonstrating an increase in pathological beta and theta rhythms that are followed by a temporal chain of activity culminating in characteristically abnormal lower limb muscle firing detected by EMG. Finally, we interrogate the potential clinical utility of our findings by contrasting the subthalamic nucleus activity signature during pathological freezing against purposeful stopping. These results advance our understanding of the neurobiological basis of gait freezing in Parkinson's disease, highlighting the role of the subthalamic nucleus and emergent synchronous activity in basal ganglia circuits in driving non-purposeful motor arrests in individuals with Parkinson's disease. Pathological subthalamic nucleus activity identified in association with freezing is discernible from that of volitional stopping, paving the way towards more effective therapeutics such as adaptive closed-loop deep brain stimulation protocols.

Download full-text PDF

Source
http://dx.doi.org/10.1093/brain/awz325DOI Listing

Publication Analysis

Top Keywords

subthalamic nucleus
32
nucleus activity
20
parkinson's disease
20
gait freezing
16
pathological subthalamic
12
freezing
11
subthalamic
8
nucleus
8
activity
8
neurobiological basis
8

Similar Publications

Our aim was to evaluate the possible long-term cerebral deposition of amyloid-β in patients with PD treated with subthalamic nucleus deep brain stimulation (STN-DBS) and its possible influence on axial and cognitive variables. Consecutive PD patients treated with bilateral STN-DBS with a long-term follow-up were included. The amyloid-β deposition was evaluated postoperatively through an 18F-flutemetamol positron emission tomography (PET) study.

View Article and Find Full Text PDF

Bilateral Lesions in Parkinson's Disease: Gaps and Controversies.

Mov Disord

December 2024

Grenoble Alpes University, CHU of Grenoble, Division of Neurology, Grenoble Institute of Neurosciences, INSERM, Grenoble, France.

Bilateral lesions of the basal ganglia using termocoagulation or radiation for improving tremor, bradykinesia, and rigidity in people with Parkinson's disease (PD) have been performed starting several decades ago, especially when levodopa and deep brain stimulation (DBS) surgery were not available. However, because of unclear additional benefit compared to unilateral lesion, and particularly to the evidence of increased adverse events occurrence, bilateral lesions were basically abandoned at the end of the 20th century. Therefore, bilateral DBS has become the standard procedure to treat PD.

View Article and Find Full Text PDF

Introduction: Subthalamic nucleus deep brain stimulation (STN DBS) improves motor symptoms of Parkinson's disease (PD), but its effect on motivation is controversial. Apathy, the lack of motivation, commonly occurs in PD and is often exacerbated after surgery and its concomitant levodopa reduction. Apathy and reward processing are associated with the ventromedial prefrontal cortex (vmPFC), which standard targeting strategies avoid by targeting the dorsolateral STN.

View Article and Find Full Text PDF

Introduction: Efficacy of deep brain stimulation (DBS) is established for several movement and psychiatric disorders. However, the mechanism of action and local tissue changes are incompletely described. We describe neurohistopathological findings of 9 patients who underwent DBS for parkinsonism and performed a systematic literature review on postmortem pathologic reports post-DBS.

View Article and Find Full Text PDF

Subthalamic γ Oscillation Underlying Rapid Eye Movement Sleep Abnormality in Parkinsonian Patients.

Mov Disord

December 2024

National Engineering Research Center of Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, China.

Background: Abnormal rapid eye movement (REM) sleep, including REM sleep behavior disorder (RBD) and reduced REM sleep, is common in Parkinson's disease (PD), highlighting the importance of further study on REM sleep. However, the biomarkers of REM disturbances remain unknown, leading to the lack of REM-specific neuromodulation interventions.

Objective: This study aims to investigate the neurophysiological biomarkers of REM disturbance in parkinsonian patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!