Sequestration of atmospheric carbon-dioxide in biospheric carbon (C) pools is a key strategy towards climate change mitigation. Soil is a huge C reservoir and its storage potential varies greatly with forest types. Therefore, in the present study, the soil organic carbon (SOC) storage pattern was assessed from 70 plots laid at three selected forest types comprising seven study sites at Kanyakumari Wildlife Sanctuary, Western Ghats, India: tropical dry deciduous (TDD I and TDD II), tropical semi-evergreen (TSE I and TSE II) and tropical evergreen forest (TEF I, TEF II and TEF III) at three depths (0-10, 10.1-20 and 20.1-30 cm). Statistical analyses were performed to understand the relationships between SOC stocks with other predictor variables. The SOC stock varied markedly with forest type and site-wise. The SOC ranged from 58 (TEF III) to 123.6 (TDD I) Mg C/ha with a mean of 84.9 ± 4.4 Mg C/ha at 0-30 cm depth. SOC stock decreased, while soil bulk density increased with increase in soil depth. The TDD forest type (115.6 Mg C/ha) stocked the highest SOC compared to TEF (75.1 Mg C/ha) and TSE (68.9 Mg C/ha) forest types. Of the total SOC stock (0-30 cm), 44.2, 32.0 and 23.8% were stored in 0-10, 10.1-20 and 20.1-30 cm respectively in all the forest types. In contrast, litter C stock were high in TEF and TSE forest types and low in TDD forest type. SOC showed significant (P < 0.01) negative relationships with bulk density, litter C, and vegetation attributes. The SOC stock stored in the study sites amount to 212.9 (TEF III) to 453.6 (TDD I) Mg of CO equivalents. The present study reveals that forest type and site characteristics have a profound impact on SOC stock, which would, in turn, exert a great bearing on the ecosystem C cycling. These results would also enhance our ability to evaluate the role of these forest types in soil C sequestration and for developing and validating SOC models for tropical forest ecosystems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-019-7881-6 | DOI Listing |
Microorganisms
December 2024
Departamento de Ciencias y Geografía, Universidad de Playa Ancha, Avenida Leopoldo Carvallo 270, Playa Ancha, Valparaíso 2340000, Chile.
The Parque Nacional La Campana (PNLC) was recently recognized for its high soil surface microbial richness. Here, we explored the microbial community structure in soil profiles from contrasting facing slopes where sclerophyllous forest (SF) and xerophytic shrubland (XS) develop. Soil physicochemical conditions (dry density, pH, and organic matter C and N isotopic soil signatures) were determined at three depths (5, 10, and 15 cm depths).
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Smart Manufacturing Research Institute (SMRI), Universiti Teknologi MARA (UiTM), Shah Alam 40450, Selangor, Malaysia.
Natural composites are emerging as promising alternative materials for 3D printing in biomedical applications due to their biocompatibility, sustainability, and unique mechanical properties. The use of natural composites offers several advantages, including reduced environmental impact, enhanced biodegradability, and improved tissue compatibility. These materials can be processed into filaments or resins suitable for various 3D printing techniques, such as fused deposition modeling (FDM).
View Article and Find Full Text PDFInsects
December 2024
Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan 44600, Jalisco, Mexico.
Background: Bees rely on plants for nutrition and reproduction, making the preservation of natural areas crucial as pollinator reservoirs. Seasonal tropical dry forests are among the richest habitats for bees, but only 27% of their original extent remains in Mexico. In contrast, temperate forests harbor fewer bee species and face high deforestation rates, with 40% of their area converted to other land uses.
View Article and Find Full Text PDFInsects
December 2024
School of Biological and Environmental Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK.
The large pine weevil ( L.) is a major pest in European and Asian coniferous forests, particularly in managed plantations where clear-felling practices create ideal conditions for its population growth. Traditional management practices involving synthetic insecticides have limited efficacy in terms of reducing pest populations and pose environmental risks.
View Article and Find Full Text PDFInsects
December 2024
Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy.
Human-driven changes in land cover and use can significantly impact species ants community structures, often leading to a decline in taxonomic diversity or species homogenization. Ant morphology, used as a proxy for ecological function, offers a valuable framework for understanding the effects of anthropogenic disturbances on ant diversity. This study explored the morphological diversity of ant assemblages in agricultural ecosystems and secondary forests in Italy and the Brazilian Amazon, analyzing how these communities are structured and adapted to different environments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!