Accumulating evidence suggests that a reduction in the number of Foxp3 regulatory T cells (Tregs) contributes to the pathogenesis of acute graft-versus-host disease (aGVHD), which is a major adverse complication that can occur after allogeneic hematopoietic stem cell transplantation (allo-HSCT). However, the precise features and mechanism underlying the defects in Tregs remain largely unknown. In this study, we demonstrated that Tregs were more dramatically decreased in bone marrow compared with those in peripheral blood from aGVHD patients and that bone marrow Treg defects were negatively associated with hematopoietic reconstitution. Tregs from aGVHD patients exhibited multiple defects, including the instability of Foxp3 expression, especially in response to IL-12, impaired suppressor function, decreased migratory capacity, and increased apoptosis. Transcriptional profiling revealed the downregulation of Lkb1, a previously identified critical regulator of murine Treg identity and metabolism, and murine Lkb1-regulated genes in Tregs from aGVHD patients. Foxp3 expression in human Tregs could be decreased and increased by the knockdown and overexpression of the Lkb1 gene, respectively. Furthermore, a loss-of-function assay in an aGVHD murine model confirmed that Lkb1 deficiency could impair Tregs and aggravate disease severity. These findings reveal that Lkb1 downregulation contributes to multiple defects in Tregs in human aGVHD and highlight the Lkb1-related pathways that could serve as therapeutic targets that may potentially be manipulated to mitigate aGVHD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7192841PMC
http://dx.doi.org/10.1038/s41423-019-0312-3DOI Listing

Publication Analysis

Top Keywords

bone marrow
12
agvhd patients
12
graft-versus-host disease
8
tregs
8
defects tregs
8
tregs agvhd
8
multiple defects
8
foxp3 expression
8
agvhd
7
loss lkb1
4

Similar Publications

Ultrasensitive Detection of Circulating Plasma Cells Using Surface-Enhanced Raman Spectroscopy and Machine Learning for Multiple Myeloma Monitoring.

Anal Chem

January 2025

Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian 350117, China.

Multiple myeloma is a hematologic malignancy characterized by the proliferation of abnormal plasma cells in the bone marrow. Despite therapeutic advancements, there remains a critical need for reliable, noninvasive methods to monitor multiple myeloma. Circulating plasma cells (CPCs) in peripheral blood are robust and independent prognostic markers, but their detection is challenging due to their low abundance.

View Article and Find Full Text PDF

One hundred thirty-four germ line PU.1 variants and the agammaglobulinemic patients carrying them.

Blood

January 2025

Division of Immunology and Allergy, Children's Hospital of Philadelphia; Department of Pediatrics, Perelman School of Medicine; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States.

Leukopoiesis is lethally arrested in mice lacking the master transcriptional regulator PU.1. Depending on the animal model, subtotal PU.

View Article and Find Full Text PDF

Understanding how intratumoral immune populations coordinate antitumor responses after therapy can guide treatment prioritization. We systematically analyzed an established immunotherapy, donor lymphocyte infusion (DLI), by assessing 348,905 single-cell transcriptomes from 74 longitudinal bone marrow samples of 25 patients with relapsed leukemia; a subset was evaluated by both protein- and transcriptome-based spatial analysis. In acute myeloid leukemia (AML) DLI responders, we identified clonally expanded CD8 cytotoxic T lymphocytes with in vitro specificity for patient-matched AML.

View Article and Find Full Text PDF

Immunologic bile duct destruction is a pathogenic condition associated with vanishing bile duct syndrome (VBDS) after liver transplantation and hematopoietic stem-cell transplantation. As the bile acid receptor sphingosine 1-phosphate receptor 2 (S1PR2) plays a critical role in recruitment of bone marrow-derived monocytes/macrophages to sites of cholestatic liver injury, S1PR2 expression was examined using cultured macrophages and patient tissues. Bile canaliculi destruction precedes intrahepatic ductopenia; therefore, we focused on hepatocyte S1PR2 and the downstream RhoA/Rho kinase 1 (ROCK1) signaling pathway and bile canaliculi alterations using three-dimensional hepatocyte culture models that form obvious bile canaliculus-like networks.

View Article and Find Full Text PDF

Legg-Calvé-Perthes disease (LCPD) involves femoral head osteonecrosis caused by disrupted blood supply, leading to joint deformity and early osteoarthritis. This study investigates the role of miRNA-223-5p in regulating hypoxia-induced apoptosis and enhancing osteogenesis in bone marrow mesenchymal stem cells (BMSCs). Utilizing a juvenile New Zealand white rabbit model of LCPD established through femoral neck ligation, we transfected BMSCs with miR-223-5p mimics, inhibitors, and controls, followed by hypoxic exposure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!