Actomyosin contractility scales with myoblast elongation and enhances differentiation through YAP nuclear export.

Sci Rep

University of Mons, Laboratory for Complex Fluids and Interfaces, Mechanobiology and Soft Matter group, Research Institute for Biosciences, Place du Parc, 20, B-7000, Mons, Belgium.

Published: October 2019

Skeletal muscle fibers are formed by the fusion of mononucleated myoblasts into long linear myotubes, which differentiate and reorganize into multinucleated myofibers that assemble in bundles to form skeletal muscles. This fundamental process requires the elongation of myoblasts into a bipolar shape, although a complete understanding of the mechanisms governing skeletal muscle fusion is lacking. To address this question, we consider cell aspect ratio, actomyosin contractility and the Hippo pathway member YAP as potential regulators of the fusion of myoblasts into myotubes. Using fibronectin micropatterns of different geometries and traction force microscopy, we investigated how myoblast elongation affects actomyosin contractility. Our findings indicate that cell elongation enhances actomyosin contractility in myoblasts, which regulate their actin network to their spreading area. Interestingly, we found that the contractility of cell pairs increased after their fusion and raise on elongated morphologies. Furthermore, our findings indicate that myoblast elongation modulates nuclear orientation and triggers cytoplasmic localization of YAP, increasing evidence that YAP is a key regulator of mechanotransduction in myoblasts. Taken together, our findings support a mechanical model where actomyosin contractility scales with myoblast elongation and enhances the differentiation of myoblasts into myotubes through YAP nuclear export.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6820726PMC
http://dx.doi.org/10.1038/s41598-019-52129-1DOI Listing

Publication Analysis

Top Keywords

actomyosin contractility
20
myoblast elongation
16
elongation enhances
12
contractility scales
8
scales myoblast
8
enhances differentiation
8
yap nuclear
8
nuclear export
8
skeletal muscle
8
myoblasts myotubes
8

Similar Publications

Cancer-related deaths primarily occur due to metastasis, a process involving the migration and invasion of cancer cells. In most solid tumors, metastasis occurs through collective cell migration (CCM), guided by "cellular leaders". These leader cells generate forces through actomyosin-mediated protrusion and contractility.

View Article and Find Full Text PDF

Regulation of myocardial contraction as revealed by intracellular Ca measurements using aequorin.

J Physiol Sci

January 2025

Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-Ku, 105-8461, Tokyo, Japan.

Of the ions involved in myocardial function, Ca is the most important. Ca is crucial to the process that allows myocardium to repeatedly contract and relax in a well-organized fashion; it is the process called excitation-contraction coupling. In order, therefore, for accurate comprehension of the physiology of the heart, it is fundamentally important to understand the detailed mechanism by which the intracellular Ca concentration is regulated to elicit excitation-contraction coupling.

View Article and Find Full Text PDF

To preserve barrier function, cell-cell junctions must dynamically remodel during cell shape changes. We have previously described a rapid tight junction repair pathway characterized by local, transient activation of RhoA, termed "Rho flares", which repair leaks in tight junctions via promoting local actomyosin-mediated junction remodeling. In this pathway, junction elongation is a mechanical trigger that initiates RhoA activation through an influx of intracellular calcium and recruitment of p115RhoGEF.

View Article and Find Full Text PDF

Dynamic mechanisms for membrane skeleton transitions.

J Cell Sci

January 2025

Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093, USA.

The plasma membrane and the underlying skeleton form a protective barrier for eukaryotic cells. The molecular players forming this complex composite material constantly rearrange under mechanical stress. One of those molecules, spectrin, is ubiquitous in the membrane skeleton and linked by short actin filaments.

View Article and Find Full Text PDF

In Vitro Formation of Actin Ring in the Fission Yeast Cell Extracts.

Cytoskeleton (Hoboken)

January 2025

Department of Life Science, Faculty of Science, Gakushuin University, Mejiro, Tokyo, Japan.

Cytokinesis in animal and fungal cells requires the contraction of actomyosin-based contractile rings formed in the division cortex of the cell during late mitosis. However, the detailed mechanism remains incompletely understood. Here, we aim to develop a novel cell-free system by encapsulating cell extracts obtained from fission yeast cells within lipid vesicles, which subsequently leads to the formation of a contractile ring-like structure inside the vesicles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!