Precise control and in-depth understanding of the interfaces are crucial for the functionality-oriented material design with desired properties. Herein, via modifying the long-standing bicrystal strategy, we proposed a novel nanowelding approach to build up interfaces between two-dimensional (2D) materials with atomic precision. This method enabled us, for the first time, to experimentally achieve the quasi-full-parameter-space grain boundaries (GBs) in 2D hexagonal boron nitride (h-BN). It further helps us unravel the long-term controversy and confusion on the registry of GBs in h-BN, including (i) discriminate the relative contribution of the strain and chemical energy on the registry of GBs; (ii) identify a new dislocation core-Frank partial dislocation and four new antiphase boundaries; and (iii) confirm the universal GB faceting. Our work provides a new paradigm to the exploitation of structural-property correlation of interfaces in 2D materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.9b03114 | DOI Listing |
Sensors (Basel)
January 2025
State Grid Zaozhuang Power Supply Company, Zaozhuang 277899, China.
Within the framework of 6G networks, the rapid proliferation of Internet of Things (IoT) devices, coupled with their decentralized and heterogeneous characteristics, presents substantial security challenges. Conventional centralized systems face significant challenges in effectively managing the diverse range of IoT devices, and they are inadequate in addressing the requirements for reduced latency and the efficient processing and analysis of large-scale data. To tackle these challenges, this paper introduces a zero-trust access control framework that integrates blockchain technology with inner-product encryption.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Mechnical and Vehicle Engineering, Hunan University, Changsha 411082, China.
Chip defect detection is a crucial aspect of the semiconductor production industry, given its significant impact on chip performance. This paper proposes a lightweight neural network with dual decoding paths for LED chip segmentation, named LDDP-Net. Within the LDDP-Net framework, the receptive field of the MobileNetv3 backbone is modified to mitigate information loss.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China.
To reveal the microstructural evolution and stress-strain distribution of 780 MPa-grade ferrite/martensite dual-phase steel during a uniaxial tensile deformation process, the plastic deformation behavior under uniaxial tension was studied using in situ EBSD and crystal plastic finite element method (CPFEM). The results showed that the geometrically necessary dislocations (GND) in ferrite accumulated continuously, which is conducive to the formation of grain boundaries, but the texture distribution did not change significantly. The average misorientation angle decreased and the proportion of low-angle grain boundaries increased with the increase of strain.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China.
High-grade non-oriented silicon steel with high magnetic induction and low iron loss produced with low carbon emissions is crucial for the development of new energy and energy-saving motors. In this paper, the trace mixed rare earth (RE) elements exhibit a great potential to enhance magnetic properties in a lower carbon emission process by multiple effects on microstructure, texture, and inclusion in non-oriented silicon steel. With the trace-doped RE elements (0.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Mechanical Engineering, Ege University, Izmir 35040, Turkey.
This study aims to enhance the electrical conductivity of commercially pure aluminium by minimizing impurities and grain boundaries in its microstructure, ultimately improving the efficiency of electric motors constructed from rotors with squirrel cages made from this material. For this purpose, an aluminium-boron (AlB8) master alloy was added to aluminium with a purity of 99.7%, followed by the application of a grain-coarsening heat treatment to the rotors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!