Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The design and fabrication of surfaces that support rapid wetting transition remain technologically challenging. Here, we examine the effects of optical illumination on the wetting behaviors of zinc oxide (ZnO) single crystals. We find that ultraviolet irradiation above the band gap energy promotes a rapid wetting transition, characterized by sliding of the water droplet, within a few seconds. Notably, the transition for Zn-polar (0001) ZnO surfaces is even faster than that for O-polar (0001̅) ZnO surfaces. We confirmed that process is dependent on power, surface polarity, and solution pH and reversible through illumination by near-infrared light, which restores the water contact angle back to its initial value. Surface chemical analysis revealed that the instantaneous photocatalytic formation of surface-terminated hydroxyl (-OH) groups is responsible for the observed rapid wetting transition. Density functional theory calculations with the inclusion of onsite Coulomb interactions revealed that both the Zn-polar and O-polar surfaces can be easily covered with -OH groups through the adsorption of -OH groups or hydrogen atoms, respectively. This study develops a route to fabricate optically active and controllable microfluidic devices that support rapid wetting transitions for water droplet manipulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.9b02629 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!