Dihydrogen (H) production from sunlight should become one of the most important energy production means in the future. To reach this goal, low-cost and efficient photocatalysts still need to be discovered. Here we show that red near-IR luminescent metal cluster anions, once combined with pyrene-containing cations, are able to photocatalytically produce molecular hydrogen from water. The pyrene moieties act simultaneously as energy transmitters and as supramolecular linkers between the cluster anions and graphene. This association results in a hybrid material combining the emission abilities of pyrene and cluster moieties with the electronic conduction efficiency of graphene. Hydrogen evolution reaction (HER) studies show that this association induces a significant increase of H production compared to that produced separately by clusters or graphene. Considering the versatility of the strategy described to design this photocatalytic hybrid material, transition-metal clusters are promising candidates to develop new, environmentally friendly, and low-cost photocatalysts for HER.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.9b02529 | DOI Listing |
ACS Nano
January 2025
School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China.
Single-crystal Au(111), renowned for its chemically inert surface, long-range "herringbone" reconstruction, and high electrical conductivity, has long served as an exemplary template in diverse fields, , crystal epitaxy, electronics, and electrocatalysis. However, commercial Au(111) products are high-priced and limited to centimeter sizes, largely restricting their broad applications. Herein, a low-cost, high-reproducible method is developed to produce 4 in.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China.
Herein, the interfacial effects on calcium carbonate clustering within two-dimensional (2D) graphene nanochannels were systematically investigated using molecular dynamics simulations. The distribution characteristics of the ions at the interface can be attributed to the ordered water layers within the 2D nanochannels. The orientation of CO is approximately perpendicular to the interface, which can be attributed to hydrogen bonding and its association with Ca at the interface region.
View Article and Find Full Text PDFUsing the first principle calculations, we propose a boron and nitrogen cluster incorporated graphene system for efficient valley polarization. The broken spatial inversion symmetry results in high Berry curvature at and valleys of the hexagonal Brillouin zone in this semiconducting system. The consideration of excitonic quasiparticles within the approximation along with their scattering processes using the many-body Bethe-Salpeter equation gives rise to an optical gap of 1.
View Article and Find Full Text PDFQuantum materials governed by emergent topological fermions have become a cornerstone of physics. Dirac fermions in graphene form the basis for moiré quantum matter and Dirac fermions in magnetic topological insulators enabled the discovery of the quantum anomalous Hall (QAH) effect. By contrast, there are few materials whose electromagnetic response is dominated by emergent Weyl fermions.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Chemistry and Pharmacy, Institute of Physical Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany.
Mucins are the macromolecular key components of mucus. On wet epithelia of mammals, mucin solutions and gels act as powerful biolubricants and reduce friction and wear by generating a sacrificial layer and establishing hydration lubrication. Yet the structure-function relationship of mucin adhesion and lubrication remains elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!