Electron Microscopy Characterization of P3 Lines and Laser Scribing-Induced Perovskite Decomposition in Perovskite Solar Modules.

ACS Appl Mater Interfaces

Department of Materials Science & Metallurgy , University of Cambridge, 27 Charles Babbage Road , Cambridge CB3 0FS , U.K.

Published: December 2019

Hybrid metal halide perovskites have emerged as a potential photovoltaic material for low-cost thin film solar cells due to their excellent optoelectronic properties. However, high efficiencies obtained with lab-scale cells are difficult to replicate in large modules. The upscaling process requires careful optimization of multiple steps, such as laser scribing, which divides a module into serially connected cells using a pulsed laser beam. In this work, we characterize the effect of laser scribing on the perovskite layer adjacent to a P3 scribe line using analytical scanning and cross-sectional transmission electron microscopy techniques. We demonstrate that lateral flow of residual thermal energy from picosecond laser pulses decomposes the perovskite layer over extended length scales. We propose that the exact nature of the change in perovskite composition is determined by the presence of preexisting PbI grains and hence by the original perovskite formation reaction. Furthermore, we show that along the P3 lines, the indium tin oxide contact is also damaged by high-fluence pulses. Our results provide a deeper understanding on the interaction between laser pulses and perovskite solar modules, highlighting the need to minimize material damage by careful tuning of both laser parameters and the device fabrication procedure.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b15520DOI Listing

Publication Analysis

Top Keywords

electron microscopy
8
perovskite solar
8
solar modules
8
laser scribing
8
perovskite layer
8
laser pulses
8
laser
7
perovskite
7
microscopy characterization
4
characterization lines
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!