Lipoxygenases (LOXs) are a family of enzymes that can oxygenate polyunsaturated fatty acids. As a member of the family, 15-lipoxygenase-1 (15-LOX-1) specifically metabolizes arachidonic acid and linoleic acid. 15-LOX-1 can affect physiological and pathophysiological events via regulation of the protein-lipid interactome, alterations in intracellular redox state and production of lipid metabolites that are involved in the induction and resolution of inflammation. Although several studies have shown that 15-LOX-1 has an antitumorigenic role in many different cancer models, including breast cancer, the role of the protein in cancer drug resistance has not been established yet. In this study, we, for the first time, aimed to show the potential role of 15-LOX-1 in acquired doxorubicin (DOX) resistance in MCF7 and HeLa cancer cell lines. Our results show that ALOX15 was transcriptionally downregulated in DOX-resistant cells compared with their drug-sensitive counterparts. Moreover, overexpression of ALOX15 in the drug-resistant cells resulted in resensitization of those cells to DOX in a cell-dependent manner. 15-LOX-1 expression could induce apoptosis by activating PPARγ and enhance the accumulation of DOX in drug-resistant MCF7 cells by altering cellular motility properties, and membrane dynamics. However, HeLa DOX cells did not show any of these effects but were susceptible to cell death when treated with 13(S)-HODE. These results underline the role and importance of 15-LOX-1 in cancer drug resistance, and points to novel mechanisms as a therapeutic approach to overcome cancer drug resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.29375DOI Listing

Publication Analysis

Top Keywords

cancer drug
12
drug resistance
12
cancer cell
8
cell lines
8
role 15-lox-1
8
15-lox-1
7
cancer
7
cells
5
15-lox-1 diverse
4
diverse roles
4

Similar Publications

Phase Characterization and Bioactivity Evaluation of Nucleic Acid-Encapsulated Biomimetically Mineralized ZIF-8.

ACS Appl Mater Interfaces

January 2025

Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, Victoria 3000, Australia.

Metal-organic frameworks (MOFs) provide diverse applications across a wide range of scientific disciplines, including drug/nucleic acid (NA) delivery. In the subclass of MOFs, zeolitic imidazolate framework-8 (ZIF-8) is well regarded due to its exceptional physicochemical properties. Biomolecules can be encapsulated and released under precise conditions within ZIF, making it an important material for materials science and biomedical applications.

View Article and Find Full Text PDF

Importance: Monoclonal antibodies (mAbs) targeting calcitonin gene-related peptide (CGRP) or its receptor (anti-CGRP mAbs) offer effective migraine-specific preventive treatment. However, concerns exist about their potential cardiovascular risks due to CGRP blockade.

Objective: To compare the incidence of cardiovascular disease (CVD) between Medicare beneficiaries with migraine who initiated anti-CGRP-mAbs vs onabotulinumtoxinA in the US.

View Article and Find Full Text PDF

Photoresponsive drug delivery systems have great potential for improved cancer therapy. However, most of the currently available drug-delivery nanosystems are relatively large and require light excitation with low tissue penetration. Here, we designed a near infrared responsive drug delivery system by loading [Ru(terpyridine)(dipyridophenazine)(HO)] (Ru(tpy)DPPZ) in azobenzene-modified mesoporous silica coated NaGdF:Nd/Yb/Tm upconversion nanoparticles (azo-mSiO-UCNPs).

View Article and Find Full Text PDF

An In Silico Approach to Uncover Selective JAK1 Inhibitors for Breast Cancer from Life Chemicals Database.

Appl Biochem Biotechnol

January 2025

Computational Biology Lab, Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Tamil Nadu, India.

JAK1, a key regulator of multiple oncogenic pathways, is a sought-out target, and its expression in immune cells and tumour-infiltrating lymphocytes (TILs) is associated with a favorable prognosis in breast cancer. JAK1 activates IL-6 via ERBB2 receptor tyrosine kinase signalling and promotes metastatic cancer and STAT3 activation in breast cancer cells. Hence, targeting JAK1 in breast cancer is being explored as a potential therapeutic strategy.

View Article and Find Full Text PDF

In the contemporary era of drug discovery, herbal treatments have demonstrated an unparalleled ability to produce anticancer drugs. An important part of the therapy of cancer is the use of plants and their by-products via analogues, which alter the tumor microenvironment and several signaling pathways. The objective of the current investigation was to conclude the rate at which the herbal medications quercetin (QT) and sulforaphane (SFN) repressed the growth of breast carcinoma cells in MDA-MB-231 by preventing the ERK/MAPK signaling systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!