Kidney ischemic/reperfusion (I/R) injury is the main cause of acute kidney injury (AKI) involving renal function deterioration, renal architecture damage, and inflammation. This condition may lead to kidney fibrosis with epithelial to mesenchymal transition (EMT) and myofibroblast formation. Inhibition of chronic effects of kidney I/R injury may provide effective strategies for treating AKI and chronic kidney diseases (CKDs). Chlorogenic acid (CGA) is recognized as a powerful antioxidant, with anti-inflammatory and antifibrotic properties in many conditions. However, the effect of CGA on kidney I/R injury has not been elucidated yet. Kidney I/R injury was performed on male Swiss background mice (I/R group,  = 5, 3-4 months, 30-40 g) which underwent bilateral renal pedicles clamping for 30 minutes and then were euthanized on day three after operation. Three groups of I/R were treated with 3 different doses of CGA intraperitoneally for 2 days: 3.5 (I/R + CGA1 group), 7 (I/R + CGA2 group), and 14 (I/R + CGA3 group) mg/kg of body weight. Tubular injury was quantified based on Periodic Acid-Schiff staining, while reverse transcriptase PCR (RT-PCR) was performed to quantify mRNA expression of TGF-1, vimentin, SOD-1, TLR-4, TNF-α, NF-κB and MCP-1. Immunohistochemical staining was done to quantify proliferating cell nuclear antigen (PCNA), myofibroblast (-SMA), SOD-1 and macrophage (CD68) number. Kidney I/R demonstrated tubular injury and increased inflammatory mediator expression, macrophage number, and myofibroblast expansion. Meanwhile, histological analysis showed lower tubular injury with higher epithelial cell proliferation in CGA-treated groups compared to the I/R group. RT-PCR also revealed significantly lower TGF-1 and vimentin mRNA expressions with higher SOD-1 mRNA expression. CGA-treated groups also demonstrated a significantly lower macrophage and myofibroblast number compared to the I/R group. These findings associated with lower mRNA expression of TLR-4, TNF-α, NF-κB, and MCP-1 as inflammatory mediators in CGA groups. I/R + CGA3 represented the highest amelioration effect among other CGA-treated groups. CGA treatment attenuates kidney I/R injury through reducing inflammation, decreasing myofibroblast expansion, and inducing epithelial cells proliferation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6778937PMC
http://dx.doi.org/10.1155/2019/5423703DOI Listing

Publication Analysis

Top Keywords

i/r injury
20
kidney i/r
20
tubular injury
16
i/r group
12
mrna expression
12
cga-treated groups
12
injury
11
kidney
10
i/r
10
chlorogenic acid
8

Similar Publications

The Coexistence of Carotico-Clinoid Foramen and Interclinoidal Osseous Bridge: An Anatomo-Radiological Study With Surgical Implications.

Oper Neurosurg (Hagerstown)

February 2025

Rhoton Neurosurgery and Otolaryngology Surgical Anatomy Program, Mayo Clinic, Rochester , Minnesota , USA.

Background And Objectives: The coexistence of complete carotico-clinoid bridge (CCB), an ossification between the anterior (ACP) and the middle clinoid (MCP), and an interclinoidal osseous bridge (ICB), between the ACP and the posterior clinoid (PCP), represents an uncommonly reported anatomic variant. If not adequately recognized, osseous bridges may complicate open or endoscopic surgery, along with the pneumatization of the ACP, especially when performing anterior or middle clinoidectomies.

Methods: According to Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Scoping Reviews guidelines, a systematic scoping review was conducted up to June 5, 2023.

View Article and Find Full Text PDF

A growing body of evidence suggests the involvement of long noncoding ribose nucleic acids (lncRNAs) in acute kidney injury (AKI). This study focused on the mechanistic role of lncRNA small nucleolar RNA host gene 12 (SNHG12) in ischemia/reperfusion (I/R)-mediated AKI. A model of hypoxia/reoxygenation (H/R) was created using human kidney cells (HK-2).

View Article and Find Full Text PDF

Arsenic trioxide preconditioning attenuates hepatic ischemia- reperfusion injury in mice: Role of ERK/AKT and autophagy.

Chin Med J (Engl)

January 2025

Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China.

Background: Arsenic trioxide (ATO) is indicated as a broad-spectrum medicine for a variety of diseases, including cancer and cardiac disease. While the role of ATO in hepatic ischemia/reperfusion injury (HIRI) has not been reported. Thus, the purpose of this study was to identify the effects of ATO on HIRI.

View Article and Find Full Text PDF

Testicular ischemia-reperfusion (I/R) injury during testicular torsion is strongly influenced by oxidative stress caused by excessive accumulation of unscavenged reactive oxygen species. This study aimed to investigate the effects of intra-peritoneal administration of Mito-TEMPO (MT) on I/R injury in testicular torsion/detorsion (T/D) in mice. Forty-two male mice were divided into seven groups including 1 control and 6 treatment groups (360° T/D, 720° T/D, 360° T/D + 0.

View Article and Find Full Text PDF

Cerebral ischemia-reperfusion (I/R) is a serious complication in patients with ischemic stroke. Senkyunolide A (SenA) can alleviate neuronal cell damage induced by cerebral I/R; however, the exact action mechanism remains unclear. An in vitro cellular injury model was established by inducing PC-12 cells with OGD/R.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!