Rhythmic Temporal Expectation Boosts Neural Activity by Increasing Neural Gain.

J Neurosci

Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, United Kingdom, and.

Published: December 2019

Temporal orienting improves sensory processing, akin to other top-down biases. However, it is unknown whether these improvements reflect increased neural gain to any stimuli presented at expected time points, or specific tuning to task-relevant stimulus aspects. Furthermore, while other top-down biases are selective, the extent of trade-offs across time is less well characterized. Here, we tested whether gain and/or tuning of auditory frequency processing in humans is modulated by rhythmic temporal expectations, and whether these modulations are specific to time points relevant for task performance. Healthy participants ( = 23) of either sex performed an auditory discrimination task while their brain activity was measured using magnetoencephalography/electroencephalography (M/EEG). Acoustic stimulation consisted of sequences of brief distractors interspersed with targets, presented in a rhythmic or jittered way. Target rhythmicity not only improved behavioral discrimination accuracy and M/EEG-based decoding of targets, but also of irrelevant distractors preceding these targets. To explain this finding in terms of increased sensitivity and/or sharpened tuning to auditory frequency, we estimated tuning curves based on M/EEG decoding results, with separate parameters describing gain and sharpness. The effect of rhythmic expectation on distractor decoding was linked to gain increase only, suggesting increased neural sensitivity to any stimuli presented at relevant time points. Being able to predict when an event may happen can improve perception and action related to this event, likely due to the alignment of neural activity to the temporal structure of stimulus streams. However, it is unclear whether rhythmic increases in neural sensitivity are specific to task-relevant targets, and whether they competitively impair stimulus processing at unexpected time points. By combining magnetoencephalography and encephalographic recordings, neural decoding of auditory stimulus features, and modeling, we found that rhythmic expectation improved neural decoding of both relevant targets and irrelevant distractors presented and expected time points, but did not competitively impair stimulus processing at unexpected time points. Using a quantitative model, these results were linked to nonspecific neural gain increases due to rhythmic expectation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6891052PMC
http://dx.doi.org/10.1523/JNEUROSCI.0925-19.2019DOI Listing

Publication Analysis

Top Keywords

time points
24
neural gain
12
rhythmic expectation
12
neural
9
rhythmic temporal
8
neural activity
8
top-down biases
8
increased neural
8
stimuli presented
8
presented expected
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!