The aim of this article is to provide an analysis of microwave effects on ferulic and coumaric acids (FA and CA, respectively) extraction from grass biomass (corn stalks and miscanthus). Microwave pretreatment using various solvents was first compared to conventional heating on corn stalks. Then, microwave operational conditions were extended in terms of incident power and treatment duration. Optimal conditions were chosen to increase -hydroxycinnamic acids release. Finally, these optimal conditions determined on corn stalks were tested on miscanthus stalks to underlie the substrate incidence on -hydroxycinnamic acids release yields. The optimal conditions-a treatment duration of 405 s under 1000 W-allowed extracting 1.38% FA and 1.97% CA in corn stalks and 0.58% FA and 3.89% CA in miscanthus stalks. The different bioaccessibility of these two molecules can explain the higher or lower yields between corn and miscanthus stalks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6864740PMC
http://dx.doi.org/10.3390/molecules24213885DOI Listing

Publication Analysis

Top Keywords

corn stalks
16
-hydroxycinnamic acids
12
miscanthus stalks
12
microwave pretreatment
8
stalks
8
treatment duration
8
optimal conditions
8
acids release
8
corn
5
soft microwave
4

Similar Publications

Corn stalk fibers extracted from cattle manure (CSFCM) represent a unique class of natural fibers that undergo biological pre-treatment during ruminant digestion. This study systematically investigates the optimization of CSFCM-reinforced friction materials through controlled silane treatment (2-10 wt.%).

View Article and Find Full Text PDF

Root-associated microbial diversity and metabolomics in maize resistance to stalk rot.

Front Microbiol

December 2024

State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China.

As one of the three major food crops in the world, maize plays a significant role in alleviating the food crisis. Maize stalk rot can reduce maize yield and mechanical harvesting efficiency. In addition, mycotoxins such as Deoxynivalenol (DON) and Zearalenone (ZEN) produced by maize stalk rot pathogens can also harm livestock and human health.

View Article and Find Full Text PDF

Characterization and rational engineering of a novel laccase from Geobacillus thermocatenulatus M17 for improved lignin degradation activity.

Int J Biol Macromol

December 2024

College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi Province, China. Electronic address:

Lignin, with its complex, high-molecular-weight aromatic polymer structure and stable ether or ester bonds, greatly impedes the efficient degradation of lignocellulosic waste. Bacterial laccases have gained attention for their potential in lignocellulosic waste degradation due to their resilience in extreme conditions and ability to be produced in large quantities. In this study, a novel laccase from Geobacillus thermocatenulatus M17 was identified and expressed in E.

View Article and Find Full Text PDF

To investigate the remediation effect of iron-manganese-modified biochar from different biomasses (FM-BC) on Cd-contaminated alkaline soil, FM-BC was prepared using branches of , durian shells, and corn stalks. The characteristics of FM-BC, the adsorption of Cd(Ⅱ) in water, and the available, fraction of Cd in alkaline soil were studied using bath adsorption and soil culture experiments. The results showed that the specific surface area, total pore volume, and oxygen content of FM-BC were significantly improved.

View Article and Find Full Text PDF

The enhancement of cellulose degradation is important for improving the quality of corn-stalk silage. However, the rapid drop in pH caused by the propagation of lactic acid bacteria (LAB) can influence the degradation of cellulose by cellulose-degrading microorganisms (CDMs) during the mixed fermentation process of ensilage. In this study, a CDM ( 2-4, BM 2-4) was isolated, and its lyophilization condition was studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!