AI Article Synopsis

  • The study focused on how different levels of nitrogen fertilizer affect goji berry yield and quality using advanced chromatographic techniques.
  • Despite varying nitrogen levels (N0, N1, N2), fruit yield and quality grades showed no significant differences.
  • A total of 612 metabolites were identified, with 53 showing significant changes, contributing to our understanding of how nitrogen influences goji berry's molecular makeup and overall production.

Article Abstract

The yield and quality of goji ( L.) fruit are heavily dependent on fertilizer, especially the availability of nitrogen, phosphorus, and potassium (N, P, and K, respectively). In this study, we performed a metabolomic analysis of the response of goji berry to nitrogen fertilizer levels using an Ultra Performance Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry (UPLC-ESI-MS/MS) method. There was no significant difference in the fruit yield or the commodity grade between N0 (42.5 g/plant), N1 (85 g/plant), and N2 (127.5 g/plant). The primary nutrients of the goji berry changed with an increasing nitrogen fertilization. Comparative metabolomic profiling of three nitrogen levels resulted in the identification of 612 metabolites, including amino acids, flavonoids, carbohydrates, organic acids, and lipids/alcohols, among others, of which 53 metabolites (lipids, fatty acids, organic acids, and phenolamides) demonstrated significant changes. These results provide new insights into the molecular mechanisms of the relationship between yield and quality of goji berry and nitrogen fertilizer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6864581PMC
http://dx.doi.org/10.3390/molecules24213879DOI Listing

Publication Analysis

Top Keywords

nitrogen fertilizer
12
goji berry
12
fertilizer levels
8
fruit yield
8
yield quality
8
quality goji
8
berry nitrogen
8
organic acids
8
nitrogen
5
impact nitrogen
4

Similar Publications

The remobilization of cadmium (Cd) in contaminated farmland soil due to nitrogen fertilizer addition has raised significant concerns regarding the effectiveness of immobilization remediation. This study investigated the effects of ammonia nitrogen (NH-N) and nitrogen (NO-N) application (100 kg/ha) on the remobilization of immobilization of remediation Cd (bound to clay palygorskite) during various growth stages of rice through field experiments. Our findings revealed that increased organic acid secretion (e.

View Article and Find Full Text PDF

Foliar application of nitrates limits lead uptake by Cucumis sativus L. plants.

J Trace Elem Med Biol

January 2025

Department of Molecular Plant Physiology, Institute of Environmental Biology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, Warszawa 02-096, Poland.

Lead is a toxic heavy metal, which accumulates in the soil and is readily absorbed by plant roots. The uptake of toxic elements by crops is a serious threat to human health. For this reason, it is important to prevent the incorporation of heavy metals into the food chain.

View Article and Find Full Text PDF

Sugarcane ( spp.) is globally considered an important crop for sugar and biofuel production. During sugarcane production, the heavy reliance on chemical nitrogen fertilizer has resulted in low nitrogen use efficiency (NUE) and high loss.

View Article and Find Full Text PDF

Response of Crop Yield and Productivity Contribution Rate to Long-Term Different Fertilization in Northeast of China.

Plants (Basel)

January 2025

Heilongjiang Academy of Black Soil Conservation and Utilization, Harbin 150086, China.

To reveal the changes in crop yield and contribution rate of black soil productivity under long-term different fertilization conditions in black soil areas and to find the important significance of fertilization for sustainable and stable crop yield, high yield, and improving the contribution rate of black soil nutrients. Based on the long-term experiment of black soil fertility in Harbin, the Ministry of Agriculture and Rural Affairs, under the maize-wheat-soybean rotation system, crop yield, sustainability and stability of yield, the contribution rate of black soil productivity, and natural nutrient supply capacity under 10 fertilization treatments (CK, NP, NK, PK, NPK, M, MNP, MNK, MPK, and MNPK) were analyzed. Results showed that, compared with the treatment of chemical fertilizer, yields of maize, wheat, and soybeans increased under treatment of organic fertilizer combined with chemical fertilizer, among which the yields of maize and wheat changed the most.

View Article and Find Full Text PDF

Combining Controlled-Release and Normal Urea Enhances Rice Grain Quality and Starch Properties by Improving Carbohydrate Supply and Grain Filling.

Plants (Basel)

January 2025

Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College, Yangzhou University, Yangzhou 225009, China.

Controlled-release nitrogen fertilizers are gaining popularity in rice ( L.) cultivation for their ability to increase yields while reducing environmental impact. Grain filling is essential for both the yield and quality of rice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!