In this work, we grew transfer-free graphene-like thin films (GLTFs) directly on gallium nitride (GaN)/sapphire light-emitting diode (LED) substrates. Their electrical, optical and thermal properties were studied for transparent electrode applications. Ultrathin platinum (2 nm) was used as the catalyst in the plasma-enhanced chemical vapor deposition (PECVD). The growth parameters were adjusted such that the high temperature exposure of GaN wafers was reduced to its minimum (deposition temperature as low as 600 °C) to ensure the intactness of GaN epilayers. In a comparison study of the Pt-GLTF GaN LED devices and Pt-only LED devices, the former was found to be superior in most aspects, including surface sheet resistance, power consumption, and temperature distribution, but not in optical transmission. This confirmed that the as-developed GLTF-based transparent electrodes had good current spreading, current injection and thermal spreading functionalities. Most importantly, the technique presented herein does not involve any material transfer, rendering a scalable, controllable, reproducible and semiconductor industry-compatible solution for transparent electrodes in GaN-based optoelectronic devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6862194 | PMC |
http://dx.doi.org/10.3390/ma12213533 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!