Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Protein adsorption at the liquid-solid interface is an old but not totally solved topic. One challenge is to find an easy way to characterize the protein behavior on nanoparticles and make a correlation with its intrinsic properties. This work aims to investigate protein adsorption on gold nanoparticles and the colloidal properties. The protein panel was chosen from different structural categories (mainly-α, mainly-β or mix-αβ). The result shows that the colloidal stability with salt addition does not depend on the structural category. Conversely, using the single nanopore technique, we show that the mainly-α proteins form a smaller corona than the mainly-β proteins. We assign these observations to the lower internal energy of α-helices, making them more prone to form a homogeneous corona layer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6862098 | PMC |
http://dx.doi.org/10.3390/ma12213524 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!