Purpose: Electromagnetic tracking systems (EMTSs) have been proposed to assist the percutaneous renal access (PRA) during minimally invasive interventions to the renal system. However, the influence of other surgical instruments widely used during PRA (like ureteroscopy and ultrasound equipment) in the EMTS performance is not completely known. This work performs this assessment for two EMTSs [Aurora Planar Field Generator (PFG); Aurora Tabletop Field Generator (TTFG)].

Methods: An assessment platform, composed by a scaffold with specific supports to attach the surgical instruments and a plate phantom with multiple levels to precisely translate or rotate the surgical instruments, was developed. The median accuracy and precision in terms of position and orientation were estimated for the PFG and TTFG in a surgical environment using this platform. Then, the influence of different surgical instruments (alone or together), namely analogic flexible ureterorenoscope (AUR), digital flexible ureterorenoscope (DUR), two-dimensional (2D) ultrasound (US) probe, and four-dimensional (4D) mechanical US probe, was assessed for both EMTSs by coupling the instruments to 5-DOF and 6-DOF sensors.

Results: Overall, the median positional and orientation accuracies in the surgical environment were 0.85 mm and 0.42° for PFG, and 0.72 mm and 0.39° for TTFG, while precisions were 0.10 mm and 0.03° for PFG, and 0.20 mm and 0.12° for TTFG, respectively. No significant differences were found for accuracy between EMTSs. However, PFG showed a tendency for higher precision than TTFG. AUR, DUR, and 2D US probe did not influence the accuracy and precision of both EMTSs. In opposition, the 4D probe distorted the signal near the attached sensor, making readings unreliable.

Conclusions: Ureteroscopy- and ultrasonography-assisted PRA based on EMTS guidance are feasible with the tested AUR or DUR together with the 2D probe. More studies must be performed to evaluate the probes and ureterorenoscopes' influence before their use in PRA based on EMTS guidance.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mp.13879DOI Listing

Publication Analysis

Top Keywords

surgical instruments
16
surgical environment
12
electromagnetic tracking
8
tracking systems
8
percutaneous renal
8
renal access
8
influence surgical
8
field generator
8
accuracy precision
8
flexible ureterorenoscope
8

Similar Publications

Speech-mediated manipulation of da Vinci surgical system for continuous surgical flow.

Biomed Eng Lett

January 2025

Department of Biomedical Engineering, Seoul National University College of Medicine, 103 Daehak-ro, Jongno- gu, Seoul, 03080 Republic of Korea.

Unlabelled: With the advent of robot-assisted surgery, user-friendly technologies have been applied to the da Vinci surgical system (dVSS), and their efficacy has been validated in worldwide surgical fields. However, further improvements are required to the traditional manipulation methods, which cannot control an endoscope and surgical instruments simultaneously. This study proposes a speech recognition control interface (SRCI) for controlling the endoscope via speech commands while manipulating surgical instruments to replace the traditional method.

View Article and Find Full Text PDF

Objective: To explain design features of scissors and surgical instruments that work against left-handed users and demonstrate how the user can adapt their technique for ambidextrous use of standard instruments.

Animals: Any species.

Methods: Standard instruments are designed for maximal efficiency with the use of a right-handed grip.

View Article and Find Full Text PDF

The traditional posterior median approach laminectomy is widely used for lumbar decompression. However, the bilateral dissection of paraspinal muscles during this procedure often leads to postoperative muscle atrophy, chronic low back pain, and other complications. The posterior midline spinous process-splitting approach (SPSA) offers a significant advantage over the traditional approach by minimizing damage to the paraspinal muscles.

View Article and Find Full Text PDF

Background: The pelvis is one of the most common areas for metastatic bone disease. We recently described the use of a minimally invasive percutaneous screw fixation of metastatic non-periacetabular pelvic lesions, with excellent results.

Description: The procedure can be completed in a standard operating theater without the need for special instruments.

View Article and Find Full Text PDF

Artificial intelligence and robotics are revolutionizing surgical practices by enhancing precision, efficiency, and patient outcomes. With global healthcare systems increasingly adopting AI-driven technologies, the integration of robotics in surgery addresses critical challenges such as surgical accuracy, minimally invasive techniques, and healthcare accessibility. However, disparities in access and ethical concerns regarding automation persist globally, necessitating a balanced discourse on these advancements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!