Dexmedetomidine (DEX), a highly specific and selective α2 adrenergic receptor agonist, has been demonstrated to possess potential cardioprotective effects. However, the mechanisms underlying this process remain to be fully illuminated. In the present study, a myocardial infarction (MI) animal model was generated by permanently ligating the left anterior descending coronary artery in mice. Cardiac function and collagen content were evaluated by transthoracic echocardiography and picrosirius red staining, respectively. Apoptosis was determined by the relative expression levels of Bax and Bcl‑2 and the myocardial caspase‑3 activity. Additionally, nicotinamide adenine dinucleotide phosphate oxidase (NOX)‑derived oxidative stress was evaluated by the relative expression of Nox2 and Nox4, along with the myocardial contents of malondialdehyde (MDA) and superoxide dismutase (SOD) activity. It was demonstrated that intraperitoneal DEX treatment (20 µg/kg/day) improved the systolic function of the left ventricle, and decreased the fibrotic changes in post‑myocardial infarction mice, which was paralleled by a decrease in the levels of apoptosis. Subsequent experiments indicated that the restoration of redox signaling was achieved by DEX administration, and the over‑activation of NOXs, including Nox2 and Nox4, was markedly inhibited. In conclusion, this present study suggested that DEX was cardioprotective and limited the excess production of NOX‑derived ROS in ischemic heart disease, implying that DEX is a promising novel drug, especially for patients who have suffered MI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6854534PMC
http://dx.doi.org/10.3892/mmr.2019.10774DOI Listing

Publication Analysis

Top Keywords

cardiac function
8
myocardial infarction
8
relative expression
8
nox2 nox4
8
dex
5
dexmedetomidine improves
4
improves cardiac
4
function protects
4
protects maladaptive
4
maladaptive remodeling
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!