Twelve naphthochromenone photocatalysts (PCs) were synthesized on gram scale. They absorb across the UV/Vis range and feature an extremely wide redox window (up to 3.22 eV) that is accessible using simple visible light irradiation sources (CFL or LED). Their excited-state redox potentials, PC*/PC (up to 1.65 V) and PC /PC* (up to -1.77 V vs. SCE), are such that these novel PCs can engage in both oxidative and reductive quenching mechanisms with strong thermodynamic requirements. The potential of these bimodal PCs was benchmarked in synthetically relevant photocatalytic processes with extreme thermodynamic requirements. Their ability to efficiently catalyze mechanistically opposite oxidative/reductive photoreactions is a unique feature of these organic photocatalysts, thus representing a decisive advance towards generality, sustainability, and cost efficiency in photocatalysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201912455 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!