Ternary Mixed Spinel Oxides as Oxygen Carriers for Chemical Looping Hydrogen Production Operating at 550 °C.

ACS Appl Mater Interfaces

Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment , Southeast University, Nanjing , Jiangsu 210096 , PR China.

Published: November 2019

Operating chemical looping at moderate temperatures circumvents the issue that the sintering of oxygen carrier materials is serious at typical operating conditions, 800-950 °C. However, lower temperatures can lead to deterioration on the reaction kinetics and thereby the low H production rate and yield. Here, we present several doped spinel oxides consisting of earth-abundant elements for chemical looping water splitting. By virtue of the ability of the Cu dopant to improve the reduction of the Co-based binary spinel, the high reducibility of the dopants in the reduction period, as well as the phase reversibility in the water splitting period, CuCoFeO shows a high hydrogen yield (∼11.9 mmol g) and an average hydrogen production rate (∼137.7 μmol g min) at 550 °C, with negligible decays in repetitive redox cycles. The performance of this material is comparable to that of the state-of-the-art perovskites which usually contain rare-earth metals, enabling its potential in industrial implementation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b14989DOI Listing

Publication Analysis

Top Keywords

chemical looping
12
spinel oxides
8
hydrogen production
8
550 °c
8
production rate
8
water splitting
8
ternary mixed
4
mixed spinel
4
oxides oxygen
4
oxygen carriers
4

Similar Publications

Developing a highly efficient 4-hydroxyphenylacetate-3-hydroxylase for salvianic acid A synthesis by computer-aided molecular modification.

Int J Biol Macromol

January 2025

Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China; Jinhua Advanced Research Institute, Jinhua 321019, China. Electronic address:

Salvianic acid A (SAA) is a catechol compound known for its diverse physiochemical functions and has significant applications in the food and pharmaceutical industries. 4-Hydroxyphenylacetate-3-hydroxylase (4HPA3H) is a critical enzyme for SAA biosynthesis, and improving its activity towards p-hydroxyphenyllactate acid (4HPLA) is essential for highly efficient SAA production in stable biosynthetic pathways. To address this, the distal site and loops of the substrate pocket were modified to improve 4HPA3H catalytic activity towards 4HPLA using computer-aided molecular modification methods.

View Article and Find Full Text PDF

Continuous production of entropy and the corresponding energy dissipation is a defining characteristic of nonequilibrium systems. When a system's full chemical kinetic description is known, its entropy production rate can be computed from the microscopic rate constants. However, such a calculation typically underestimates energy dissipation when the states of the underlying system are mesoscopic, i.

View Article and Find Full Text PDF

Background: Recent studies suggest that the anterior limb of the internal capsule may be an area of convergence for multiple compulsion loops. In this study, the role of different dopaminergic compulsion loops in the mechanism of obsessive-compulsive disorder (OCD) was investigated by selectively damaging dopaminergic neurons or fibers in the corresponding targets with 6-hydroxydopamine (6-OHDA) and depicting the anatomical map of various compulsion loops located in the anterior limb of the internal capsule.

Methods: A total of 52 male Sprague Dawley (SD) rats were exposed to either saline (1 mL/kg, NS group, n = 6) or quinpirole (QNP, dopamine D2-agonist, 0.

View Article and Find Full Text PDF

The chemical looping co-gasification of nitrogen-containing algal biomass and coal could effectively realize the high-value utilization of gasification products, but the mechanism of conversion of nitrogen-containing pollutants is not clear. In this work, the effects of the different ratios of microalgae on the co-gasification process were first explored, and the results showed that the 40 % coal + 60 % microalgae blending had the best synergistic effect, with a comprehensive synergistic index (CSI) of 1.35 as the maximum value.

View Article and Find Full Text PDF

RNA metabolism is focused on RNA molecules and encompasses all the crucial processes an RNA molecule may or will undergo throughout its life cycle. It is an essential cellular process that allows all cells to function effectively. The transcriptomic landscape of a cell is shaped by the processes such as RNA biosynthesis, maturation (RNA processing, folding, and modification), intra- and inter-cellular transport, transcriptional and post-transcriptional regulation, modification, catabolic decay, and retrograde signaling, all of which are interconnected and are essential for cellular RNA homeostasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!