One of the most promising strategies to treat cancer is the use of therapeutic antibodies that disrupt cell-cell adhesion mediated by dysregulated cadherins. The principal site where cell-cell adhesion occurs encompasses Trp2 found at the N-terminal region of the protein. Herein, we employed the naturally exposed highly conserved peptide Asp1-Trp2-Val3-Ile4-Pro5-Pro6-Ile7, as epitope to prepare molecularly imprinted polymer nanoparticles (MIP-NPs) to recognize cadherins. Since MIP-NPs target the site responsible for adhesion, they were more potent than commercially available therapeutic antibodies for inhibiting cell-cell adhesion in cell aggregation assays, and for completely disrupting three-dimensional tumor spheroids as well as inhibiting invasion of HeLa cells. These biocompatible supramolecular anti-adhesives may potentially be used as immunotherapeutic or sensitizing agents to enhance antitumor effects of chemotherapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201910373 | DOI Listing |
Methods Mol Biol
December 2024
University of Münster Institute of Physiological Chemistry and Pathobiochemistry, Münster, Germany.
The precise spatial and temporal regulation of cell-cell adhesions is crucial for understanding the underlying biological processes and for assembling multicellular structures in tissue engineering. Traditional approaches have relied on chemical membrane functionalization and regulated gene expression of native cell adhesion molecules (CAMs), but these methods lack the necessary control and can be detrimental to cells. In contrast, engineered photoswitchable cell-cell adhesions offer a reversible and dynamic regulation at a single-cell resolution.
View Article and Find Full Text PDFbioRxiv
December 2024
Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
A key goal of synthetic morphogenesis is the identification and implementation of methods to control morphogenesis. One line of research is the use of synthetic genetic circuits guiding the self-organization of cell ensembles. This approach has led to several recent successes, including control of cellular rearrangements in 3D via control of cell-cell adhesion by user-designed artificial genetic circuits.
View Article and Find Full Text PDFFEBS J
December 2024
Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China.
Contactin-2 (CNTN2), an immunoglobulin cell adhesion molecule (IgCAM) expressed on the neural cell surface, regulates the formation of myelin sheaths, facilitates communication between neurons and axoglial cells, and coordinates the migration of neural cells. However, the assembly of full-length CNTN2 is still not fully elucidated. Here, we found that the full-length human CNTN2 forms a concentration-dependent homodimer.
View Article and Find Full Text PDFJ Ethnopharmacol
December 2024
Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, 100029, China. Electronic address:
Ethnopharmacological Relevance: Danlong oral liquid (DLOL) is a traditional Chinese proprietary medicine commonly used to treat chronic respiratory diseases, including bronchial asthma and chronic obstructive pulmonary disease. However, the therapeutic effects and pharmacological mechanisms of DLOL in improving airway remodeling remain unclear.
Aims Of The Study: This study utilizes in vivo and in vitro experiments, serum pharmacological analysis, and network-based pharmacology approaches to investigate the effects and mechanisms of DLOL on airway remodeling and epithelial-mesenchymal transition (EMT) in asthma.
Proc Natl Acad Sci U S A
December 2024
Department of Biological Sciences, University of Denver, Denver, CO 80208.
The discovery that sponges (Porifera) can fully regenerate from aggregates of dissociated cells launched them as one of the earliest experimental models to study the evolution of cell adhesion and allorecognition in animals. This process depends on an extracellular glycoprotein complex called the Aggregation Factor (AF), which is composed of proteins thought to be unique to sponges. We used quantitative proteomics to identify additional AF components and interacting proteins in the classical model, , and compared them to proteins involved in cell interactions in Bilateria.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!