Anlotinib attenuated bleomycin-induced pulmonary fibrosis via the TGF-β1 signalling pathway.

J Pharm Pharmacol

The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.

Published: January 2020

Objectives: Anlotinib hydrochloride (AL3818) is a novel multitarget tyrosine kinase inhibitor which has the same targets as nintedanib, an effective drug has been approved for the treatment of idiopathic pulmonary fibrosis. Here, we examined whether anlotinib could also attenuate bleomycin-induced pulmonary fibrosis in mice and explored the antifibrosis mechanism.

Methods: We have evaluated the effect of anlotinib on bleomycin-induced pulmonary fibrosis in mice. Inflammatory cytokines in alveolar lavage fluid including IL-1β, IL-4, IL-6 and TNF-α were determined by ELISA. Biomarkers of oxidative stress were measured by corresponding kit. Histopathologic examination was analysed by H&E staining and immunohistochemistry. In vitro, we investigated whether anlotinib inhibited TGFβ/Smad3 and non-Smad pathways by luciferase assay or Western blotting. We also evaluated whether anlotinib inhibited TGF-β1-induced epithelial-mesenchymal transition (EMT) and promoted myofibroblast apoptosis in order to explore the possible molecular mechanism.

Key Findings: The results indicated that anlotinib treatment remarkably attenuated inflammation, oxidative stress and pulmonary fibrosis in mouse lungs. Anlotinib could inhibit the TGF-β1 signalling pathway. Additionally, anlotinib not only profoundly inhibited TGF-β1-induced EMT in alveolar epithelial cells, but also simultaneously reduced the proliferation and promoted the apoptosis in fibroblasts.

Conclusions: In summary, the results suggest that anlotinib-mediated suppression of pulmonary fibrosis is related to the inhibition of TGF-β1 signalling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jphp.13183DOI Listing

Publication Analysis

Top Keywords

pulmonary fibrosis
24
bleomycin-induced pulmonary
12
tgf-β1 signalling
12
signalling pathway
12
anlotinib
9
fibrosis mice
8
evaluated anlotinib
8
oxidative stress
8
anlotinib inhibited
8
inhibited tgf-β1-induced
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!